1*> \brief \b ZLATTR
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*  Definition:
9*  ===========
10*
11*       SUBROUTINE ZLATTR( IMAT, UPLO, TRANS, DIAG, ISEED, N, A, LDA, B,
12*                          WORK, RWORK, INFO )
13*
14*       .. Scalar Arguments ..
15*       CHARACTER          DIAG, TRANS, UPLO
16*       INTEGER            IMAT, INFO, LDA, N
17*       ..
18*       .. Array Arguments ..
19*       INTEGER            ISEED( 4 )
20*       DOUBLE PRECISION   RWORK( * )
21*       COMPLEX*16         A( LDA, * ), B( * ), WORK( * )
22*       ..
23*
24*
25*> \par Purpose:
26*  =============
27*>
28*> \verbatim
29*>
30*> ZLATTR generates a triangular test matrix in 2-dimensional storage.
31*> IMAT and UPLO uniquely specify the properties of the test matrix,
32*> which is returned in the array A.
33*> \endverbatim
34*
35*  Arguments:
36*  ==========
37*
38*> \param[in] IMAT
39*> \verbatim
40*>          IMAT is INTEGER
41*>          An integer key describing which matrix to generate for this
42*>          path.
43*> \endverbatim
44*>
45*> \param[in] UPLO
46*> \verbatim
47*>          UPLO is CHARACTER*1
48*>          Specifies whether the matrix A will be upper or lower
49*>          triangular.
50*>          = 'U':  Upper triangular
51*>          = 'L':  Lower triangular
52*> \endverbatim
53*>
54*> \param[in] TRANS
55*> \verbatim
56*>          TRANS is CHARACTER*1
57*>          Specifies whether the matrix or its transpose will be used.
58*>          = 'N':  No transpose
59*>          = 'T':  Transpose
60*>          = 'C':  Conjugate transpose
61*> \endverbatim
62*>
63*> \param[out] DIAG
64*> \verbatim
65*>          DIAG is CHARACTER*1
66*>          Specifies whether or not the matrix A is unit triangular.
67*>          = 'N':  Non-unit triangular
68*>          = 'U':  Unit triangular
69*> \endverbatim
70*>
71*> \param[in,out] ISEED
72*> \verbatim
73*>          ISEED is INTEGER array, dimension (4)
74*>          The seed vector for the random number generator (used in
75*>          ZLATMS).  Modified on exit.
76*> \endverbatim
77*>
78*> \param[in] N
79*> \verbatim
80*>          N is INTEGER
81*>          The order of the matrix to be generated.
82*> \endverbatim
83*>
84*> \param[out] A
85*> \verbatim
86*>          A is COMPLEX*16 array, dimension (LDA,N)
87*>          The triangular matrix A.  If UPLO = 'U', the leading N x N
88*>          upper triangular part of the array A contains the upper
89*>          triangular matrix, and the strictly lower triangular part of
90*>          A is not referenced.  If UPLO = 'L', the leading N x N lower
91*>          triangular part of the array A contains the lower triangular
92*>          matrix and the strictly upper triangular part of A is not
93*>          referenced.
94*> \endverbatim
95*>
96*> \param[in] LDA
97*> \verbatim
98*>          LDA is INTEGER
99*>          The leading dimension of the array A.  LDA >= max(1,N).
100*> \endverbatim
101*>
102*> \param[out] B
103*> \verbatim
104*>          B is COMPLEX*16 array, dimension (N)
105*>          The right hand side vector, if IMAT > 10.
106*> \endverbatim
107*>
108*> \param[out] WORK
109*> \verbatim
110*>          WORK is COMPLEX*16 array, dimension (2*N)
111*> \endverbatim
112*>
113*> \param[out] RWORK
114*> \verbatim
115*>          RWORK is DOUBLE PRECISION array, dimension (N)
116*> \endverbatim
117*>
118*> \param[out] INFO
119*> \verbatim
120*>          INFO is INTEGER
121*>          = 0:  successful exit
122*>          < 0:  if INFO = -i, the i-th argument had an illegal value
123*> \endverbatim
124*
125*  Authors:
126*  ========
127*
128*> \author Univ. of Tennessee
129*> \author Univ. of California Berkeley
130*> \author Univ. of Colorado Denver
131*> \author NAG Ltd.
132*
133*> \ingroup complex16_lin
134*
135*  =====================================================================
136      SUBROUTINE ZLATTR( IMAT, UPLO, TRANS, DIAG, ISEED, N, A, LDA, B,
137     $                   WORK, RWORK, INFO )
138*
139*  -- LAPACK test routine --
140*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
141*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
142*
143*     .. Scalar Arguments ..
144      CHARACTER          DIAG, TRANS, UPLO
145      INTEGER            IMAT, INFO, LDA, N
146*     ..
147*     .. Array Arguments ..
148      INTEGER            ISEED( 4 )
149      DOUBLE PRECISION   RWORK( * )
150      COMPLEX*16         A( LDA, * ), B( * ), WORK( * )
151*     ..
152*
153*  =====================================================================
154*
155*     .. Parameters ..
156      DOUBLE PRECISION   ONE, TWO, ZERO
157      PARAMETER          ( ONE = 1.0D+0, TWO = 2.0D+0, ZERO = 0.0D+0 )
158*     ..
159*     .. Local Scalars ..
160      LOGICAL            UPPER
161      CHARACTER          DIST, TYPE
162      CHARACTER*3        PATH
163      INTEGER            I, IY, J, JCOUNT, KL, KU, MODE
164      DOUBLE PRECISION   ANORM, BIGNUM, BNORM, BSCAL, C, CNDNUM, REXP,
165     $                   SFAC, SMLNUM, TEXP, TLEFT, TSCAL, ULP, UNFL, X,
166     $                   Y, Z
167      COMPLEX*16         PLUS1, PLUS2, RA, RB, S, STAR1
168*     ..
169*     .. External Functions ..
170      LOGICAL            LSAME
171      INTEGER            IZAMAX
172      DOUBLE PRECISION   DLAMCH, DLARND
173      COMPLEX*16         ZLARND
174      EXTERNAL           LSAME, IZAMAX, DLAMCH, DLARND, ZLARND
175*     ..
176*     .. External Subroutines ..
177      EXTERNAL           DLABAD, DLARNV, ZCOPY, ZDSCAL, ZLARNV, ZLATB4,
178     $                   ZLATMS, ZROT, ZROTG, ZSWAP
179*     ..
180*     .. Intrinsic Functions ..
181      INTRINSIC          ABS, DBLE, DCMPLX, DCONJG, MAX, SQRT
182*     ..
183*     .. Executable Statements ..
184*
185      PATH( 1: 1 ) = 'Zomplex precision'
186      PATH( 2: 3 ) = 'TR'
187      UNFL = DLAMCH( 'Safe minimum' )
188      ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
189      SMLNUM = UNFL
190      BIGNUM = ( ONE-ULP ) / SMLNUM
191      CALL DLABAD( SMLNUM, BIGNUM )
192      IF( ( IMAT.GE.7 .AND. IMAT.LE.10 ) .OR. IMAT.EQ.18 ) THEN
193         DIAG = 'U'
194      ELSE
195         DIAG = 'N'
196      END IF
197      INFO = 0
198*
199*     Quick return if N.LE.0.
200*
201      IF( N.LE.0 )
202     $   RETURN
203*
204*     Call ZLATB4 to set parameters for CLATMS.
205*
206      UPPER = LSAME( UPLO, 'U' )
207      IF( UPPER ) THEN
208         CALL ZLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
209     $                CNDNUM, DIST )
210      ELSE
211         CALL ZLATB4( PATH, -IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
212     $                CNDNUM, DIST )
213      END IF
214*
215*     IMAT <= 6:  Non-unit triangular matrix
216*
217      IF( IMAT.LE.6 ) THEN
218         CALL ZLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, CNDNUM,
219     $                ANORM, KL, KU, 'No packing', A, LDA, WORK, INFO )
220*
221*     IMAT > 6:  Unit triangular matrix
222*     The diagonal is deliberately set to something other than 1.
223*
224*     IMAT = 7:  Matrix is the identity
225*
226      ELSE IF( IMAT.EQ.7 ) THEN
227         IF( UPPER ) THEN
228            DO 20 J = 1, N
229               DO 10 I = 1, J - 1
230                  A( I, J ) = ZERO
231   10          CONTINUE
232               A( J, J ) = J
233   20       CONTINUE
234         ELSE
235            DO 40 J = 1, N
236               A( J, J ) = J
237               DO 30 I = J + 1, N
238                  A( I, J ) = ZERO
239   30          CONTINUE
240   40       CONTINUE
241         END IF
242*
243*     IMAT > 7:  Non-trivial unit triangular matrix
244*
245*     Generate a unit triangular matrix T with condition CNDNUM by
246*     forming a triangular matrix with known singular values and
247*     filling in the zero entries with Givens rotations.
248*
249      ELSE IF( IMAT.LE.10 ) THEN
250         IF( UPPER ) THEN
251            DO 60 J = 1, N
252               DO 50 I = 1, J - 1
253                  A( I, J ) = ZERO
254   50          CONTINUE
255               A( J, J ) = J
256   60       CONTINUE
257         ELSE
258            DO 80 J = 1, N
259               A( J, J ) = J
260               DO 70 I = J + 1, N
261                  A( I, J ) = ZERO
262   70          CONTINUE
263   80       CONTINUE
264         END IF
265*
266*        Since the trace of a unit triangular matrix is 1, the product
267*        of its singular values must be 1.  Let s = sqrt(CNDNUM),
268*        x = sqrt(s) - 1/sqrt(s), y = sqrt(2/(n-2))*x, and z = x**2.
269*        The following triangular matrix has singular values s, 1, 1,
270*        ..., 1, 1/s:
271*
272*        1  y  y  y  ...  y  y  z
273*           1  0  0  ...  0  0  y
274*              1  0  ...  0  0  y
275*                 .  ...  .  .  .
276*                     .   .  .  .
277*                         1  0  y
278*                            1  y
279*                               1
280*
281*        To fill in the zeros, we first multiply by a matrix with small
282*        condition number of the form
283*
284*        1  0  0  0  0  ...
285*           1  +  *  0  0  ...
286*              1  +  0  0  0
287*                 1  +  *  0  0
288*                    1  +  0  0
289*                       ...
290*                          1  +  0
291*                             1  0
292*                                1
293*
294*        Each element marked with a '*' is formed by taking the product
295*        of the adjacent elements marked with '+'.  The '*'s can be
296*        chosen freely, and the '+'s are chosen so that the inverse of
297*        T will have elements of the same magnitude as T.  If the *'s in
298*        both T and inv(T) have small magnitude, T is well conditioned.
299*        The two offdiagonals of T are stored in WORK.
300*
301*        The product of these two matrices has the form
302*
303*        1  y  y  y  y  y  .  y  y  z
304*           1  +  *  0  0  .  0  0  y
305*              1  +  0  0  .  0  0  y
306*                 1  +  *  .  .  .  .
307*                    1  +  .  .  .  .
308*                       .  .  .  .  .
309*                          .  .  .  .
310*                             1  +  y
311*                                1  y
312*                                   1
313*
314*        Now we multiply by Givens rotations, using the fact that
315*
316*              [  c   s ] [  1   w ] [ -c  -s ] =  [  1  -w ]
317*              [ -s   c ] [  0   1 ] [  s  -c ]    [  0   1 ]
318*        and
319*              [ -c  -s ] [  1   0 ] [  c   s ] =  [  1   0 ]
320*              [  s  -c ] [  w   1 ] [ -s   c ]    [ -w   1 ]
321*
322*        where c = w / sqrt(w**2+4) and s = 2 / sqrt(w**2+4).
323*
324         STAR1 = 0.25D0*ZLARND( 5, ISEED )
325         SFAC = 0.5D0
326         PLUS1 = SFAC*ZLARND( 5, ISEED )
327         DO 90 J = 1, N, 2
328            PLUS2 = STAR1 / PLUS1
329            WORK( J ) = PLUS1
330            WORK( N+J ) = STAR1
331            IF( J+1.LE.N ) THEN
332               WORK( J+1 ) = PLUS2
333               WORK( N+J+1 ) = ZERO
334               PLUS1 = STAR1 / PLUS2
335               REXP = DLARND( 2, ISEED )
336               IF( REXP.LT.ZERO ) THEN
337                  STAR1 = -SFAC**( ONE-REXP )*ZLARND( 5, ISEED )
338               ELSE
339                  STAR1 = SFAC**( ONE+REXP )*ZLARND( 5, ISEED )
340               END IF
341            END IF
342   90    CONTINUE
343*
344         X = SQRT( CNDNUM ) - 1 / SQRT( CNDNUM )
345         IF( N.GT.2 ) THEN
346            Y = SQRT( 2.D0 / ( N-2 ) )*X
347         ELSE
348            Y = ZERO
349         END IF
350         Z = X*X
351*
352         IF( UPPER ) THEN
353            IF( N.GT.3 ) THEN
354               CALL ZCOPY( N-3, WORK, 1, A( 2, 3 ), LDA+1 )
355               IF( N.GT.4 )
356     $            CALL ZCOPY( N-4, WORK( N+1 ), 1, A( 2, 4 ), LDA+1 )
357            END IF
358            DO 100 J = 2, N - 1
359               A( 1, J ) = Y
360               A( J, N ) = Y
361  100       CONTINUE
362            A( 1, N ) = Z
363         ELSE
364            IF( N.GT.3 ) THEN
365               CALL ZCOPY( N-3, WORK, 1, A( 3, 2 ), LDA+1 )
366               IF( N.GT.4 )
367     $            CALL ZCOPY( N-4, WORK( N+1 ), 1, A( 4, 2 ), LDA+1 )
368            END IF
369            DO 110 J = 2, N - 1
370               A( J, 1 ) = Y
371               A( N, J ) = Y
372  110       CONTINUE
373            A( N, 1 ) = Z
374         END IF
375*
376*        Fill in the zeros using Givens rotations.
377*
378         IF( UPPER ) THEN
379            DO 120 J = 1, N - 1
380               RA = A( J, J+1 )
381               RB = 2.0D0
382               CALL ZROTG( RA, RB, C, S )
383*
384*              Multiply by [ c  s; -conjg(s)  c] on the left.
385*
386               IF( N.GT.J+1 )
387     $            CALL ZROT( N-J-1, A( J, J+2 ), LDA, A( J+1, J+2 ),
388     $                       LDA, C, S )
389*
390*              Multiply by [-c -s;  conjg(s) -c] on the right.
391*
392               IF( J.GT.1 )
393     $            CALL ZROT( J-1, A( 1, J+1 ), 1, A( 1, J ), 1, -C, -S )
394*
395*              Negate A(J,J+1).
396*
397               A( J, J+1 ) = -A( J, J+1 )
398  120       CONTINUE
399         ELSE
400            DO 130 J = 1, N - 1
401               RA = A( J+1, J )
402               RB = 2.0D0
403               CALL ZROTG( RA, RB, C, S )
404               S = DCONJG( S )
405*
406*              Multiply by [ c -s;  conjg(s) c] on the right.
407*
408               IF( N.GT.J+1 )
409     $            CALL ZROT( N-J-1, A( J+2, J+1 ), 1, A( J+2, J ), 1, C,
410     $                       -S )
411*
412*              Multiply by [-c  s; -conjg(s) -c] on the left.
413*
414               IF( J.GT.1 )
415     $            CALL ZROT( J-1, A( J, 1 ), LDA, A( J+1, 1 ), LDA, -C,
416     $                       S )
417*
418*              Negate A(J+1,J).
419*
420               A( J+1, J ) = -A( J+1, J )
421  130       CONTINUE
422         END IF
423*
424*     IMAT > 10:  Pathological test cases.  These triangular matrices
425*     are badly scaled or badly conditioned, so when used in solving a
426*     triangular system they may cause overflow in the solution vector.
427*
428      ELSE IF( IMAT.EQ.11 ) THEN
429*
430*        Type 11:  Generate a triangular matrix with elements between
431*        -1 and 1. Give the diagonal norm 2 to make it well-conditioned.
432*        Make the right hand side large so that it requires scaling.
433*
434         IF( UPPER ) THEN
435            DO 140 J = 1, N
436               CALL ZLARNV( 4, ISEED, J-1, A( 1, J ) )
437               A( J, J ) = ZLARND( 5, ISEED )*TWO
438  140       CONTINUE
439         ELSE
440            DO 150 J = 1, N
441               IF( J.LT.N )
442     $            CALL ZLARNV( 4, ISEED, N-J, A( J+1, J ) )
443               A( J, J ) = ZLARND( 5, ISEED )*TWO
444  150       CONTINUE
445         END IF
446*
447*        Set the right hand side so that the largest value is BIGNUM.
448*
449         CALL ZLARNV( 2, ISEED, N, B )
450         IY = IZAMAX( N, B, 1 )
451         BNORM = ABS( B( IY ) )
452         BSCAL = BIGNUM / MAX( ONE, BNORM )
453         CALL ZDSCAL( N, BSCAL, B, 1 )
454*
455      ELSE IF( IMAT.EQ.12 ) THEN
456*
457*        Type 12:  Make the first diagonal element in the solve small to
458*        cause immediate overflow when dividing by T(j,j).
459*        In type 12, the offdiagonal elements are small (CNORM(j) < 1).
460*
461         CALL ZLARNV( 2, ISEED, N, B )
462         TSCAL = ONE / MAX( ONE, DBLE( N-1 ) )
463         IF( UPPER ) THEN
464            DO 160 J = 1, N
465               CALL ZLARNV( 4, ISEED, J-1, A( 1, J ) )
466               CALL ZDSCAL( J-1, TSCAL, A( 1, J ), 1 )
467               A( J, J ) = ZLARND( 5, ISEED )
468  160       CONTINUE
469            A( N, N ) = SMLNUM*A( N, N )
470         ELSE
471            DO 170 J = 1, N
472               IF( J.LT.N ) THEN
473                  CALL ZLARNV( 4, ISEED, N-J, A( J+1, J ) )
474                  CALL ZDSCAL( N-J, TSCAL, A( J+1, J ), 1 )
475               END IF
476               A( J, J ) = ZLARND( 5, ISEED )
477  170       CONTINUE
478            A( 1, 1 ) = SMLNUM*A( 1, 1 )
479         END IF
480*
481      ELSE IF( IMAT.EQ.13 ) THEN
482*
483*        Type 13:  Make the first diagonal element in the solve small to
484*        cause immediate overflow when dividing by T(j,j).
485*        In type 13, the offdiagonal elements are O(1) (CNORM(j) > 1).
486*
487         CALL ZLARNV( 2, ISEED, N, B )
488         IF( UPPER ) THEN
489            DO 180 J = 1, N
490               CALL ZLARNV( 4, ISEED, J-1, A( 1, J ) )
491               A( J, J ) = ZLARND( 5, ISEED )
492  180       CONTINUE
493            A( N, N ) = SMLNUM*A( N, N )
494         ELSE
495            DO 190 J = 1, N
496               IF( J.LT.N )
497     $            CALL ZLARNV( 4, ISEED, N-J, A( J+1, J ) )
498               A( J, J ) = ZLARND( 5, ISEED )
499  190       CONTINUE
500            A( 1, 1 ) = SMLNUM*A( 1, 1 )
501         END IF
502*
503      ELSE IF( IMAT.EQ.14 ) THEN
504*
505*        Type 14:  T is diagonal with small numbers on the diagonal to
506*        make the growth factor underflow, but a small right hand side
507*        chosen so that the solution does not overflow.
508*
509         IF( UPPER ) THEN
510            JCOUNT = 1
511            DO 210 J = N, 1, -1
512               DO 200 I = 1, J - 1
513                  A( I, J ) = ZERO
514  200          CONTINUE
515               IF( JCOUNT.LE.2 ) THEN
516                  A( J, J ) = SMLNUM*ZLARND( 5, ISEED )
517               ELSE
518                  A( J, J ) = ZLARND( 5, ISEED )
519               END IF
520               JCOUNT = JCOUNT + 1
521               IF( JCOUNT.GT.4 )
522     $            JCOUNT = 1
523  210       CONTINUE
524         ELSE
525            JCOUNT = 1
526            DO 230 J = 1, N
527               DO 220 I = J + 1, N
528                  A( I, J ) = ZERO
529  220          CONTINUE
530               IF( JCOUNT.LE.2 ) THEN
531                  A( J, J ) = SMLNUM*ZLARND( 5, ISEED )
532               ELSE
533                  A( J, J ) = ZLARND( 5, ISEED )
534               END IF
535               JCOUNT = JCOUNT + 1
536               IF( JCOUNT.GT.4 )
537     $            JCOUNT = 1
538  230       CONTINUE
539         END IF
540*
541*        Set the right hand side alternately zero and small.
542*
543         IF( UPPER ) THEN
544            B( 1 ) = ZERO
545            DO 240 I = N, 2, -2
546               B( I ) = ZERO
547               B( I-1 ) = SMLNUM*ZLARND( 5, ISEED )
548  240       CONTINUE
549         ELSE
550            B( N ) = ZERO
551            DO 250 I = 1, N - 1, 2
552               B( I ) = ZERO
553               B( I+1 ) = SMLNUM*ZLARND( 5, ISEED )
554  250       CONTINUE
555         END IF
556*
557      ELSE IF( IMAT.EQ.15 ) THEN
558*
559*        Type 15:  Make the diagonal elements small to cause gradual
560*        overflow when dividing by T(j,j).  To control the amount of
561*        scaling needed, the matrix is bidiagonal.
562*
563         TEXP = ONE / MAX( ONE, DBLE( N-1 ) )
564         TSCAL = SMLNUM**TEXP
565         CALL ZLARNV( 4, ISEED, N, B )
566         IF( UPPER ) THEN
567            DO 270 J = 1, N
568               DO 260 I = 1, J - 2
569                  A( I, J ) = 0.D0
570  260          CONTINUE
571               IF( J.GT.1 )
572     $            A( J-1, J ) = DCMPLX( -ONE, -ONE )
573               A( J, J ) = TSCAL*ZLARND( 5, ISEED )
574  270       CONTINUE
575            B( N ) = DCMPLX( ONE, ONE )
576         ELSE
577            DO 290 J = 1, N
578               DO 280 I = J + 2, N
579                  A( I, J ) = 0.D0
580  280          CONTINUE
581               IF( J.LT.N )
582     $            A( J+1, J ) = DCMPLX( -ONE, -ONE )
583               A( J, J ) = TSCAL*ZLARND( 5, ISEED )
584  290       CONTINUE
585            B( 1 ) = DCMPLX( ONE, ONE )
586         END IF
587*
588      ELSE IF( IMAT.EQ.16 ) THEN
589*
590*        Type 16:  One zero diagonal element.
591*
592         IY = N / 2 + 1
593         IF( UPPER ) THEN
594            DO 300 J = 1, N
595               CALL ZLARNV( 4, ISEED, J-1, A( 1, J ) )
596               IF( J.NE.IY ) THEN
597                  A( J, J ) = ZLARND( 5, ISEED )*TWO
598               ELSE
599                  A( J, J ) = ZERO
600               END IF
601  300       CONTINUE
602         ELSE
603            DO 310 J = 1, N
604               IF( J.LT.N )
605     $            CALL ZLARNV( 4, ISEED, N-J, A( J+1, J ) )
606               IF( J.NE.IY ) THEN
607                  A( J, J ) = ZLARND( 5, ISEED )*TWO
608               ELSE
609                  A( J, J ) = ZERO
610               END IF
611  310       CONTINUE
612         END IF
613         CALL ZLARNV( 2, ISEED, N, B )
614         CALL ZDSCAL( N, TWO, B, 1 )
615*
616      ELSE IF( IMAT.EQ.17 ) THEN
617*
618*        Type 17:  Make the offdiagonal elements large to cause overflow
619*        when adding a column of T.  In the non-transposed case, the
620*        matrix is constructed to cause overflow when adding a column in
621*        every other step.
622*
623         TSCAL = UNFL / ULP
624         TSCAL = ( ONE-ULP ) / TSCAL
625         DO 330 J = 1, N
626            DO 320 I = 1, N
627               A( I, J ) = 0.D0
628  320       CONTINUE
629  330    CONTINUE
630         TEXP = ONE
631         IF( UPPER ) THEN
632            DO 340 J = N, 2, -2
633               A( 1, J ) = -TSCAL / DBLE( N+1 )
634               A( J, J ) = ONE
635               B( J ) = TEXP*( ONE-ULP )
636               A( 1, J-1 ) = -( TSCAL / DBLE( N+1 ) ) / DBLE( N+2 )
637               A( J-1, J-1 ) = ONE
638               B( J-1 ) = TEXP*DBLE( N*N+N-1 )
639               TEXP = TEXP*2.D0
640  340       CONTINUE
641            B( 1 ) = ( DBLE( N+1 ) / DBLE( N+2 ) )*TSCAL
642         ELSE
643            DO 350 J = 1, N - 1, 2
644               A( N, J ) = -TSCAL / DBLE( N+1 )
645               A( J, J ) = ONE
646               B( J ) = TEXP*( ONE-ULP )
647               A( N, J+1 ) = -( TSCAL / DBLE( N+1 ) ) / DBLE( N+2 )
648               A( J+1, J+1 ) = ONE
649               B( J+1 ) = TEXP*DBLE( N*N+N-1 )
650               TEXP = TEXP*2.D0
651  350       CONTINUE
652            B( N ) = ( DBLE( N+1 ) / DBLE( N+2 ) )*TSCAL
653         END IF
654*
655      ELSE IF( IMAT.EQ.18 ) THEN
656*
657*        Type 18:  Generate a unit triangular matrix with elements
658*        between -1 and 1, and make the right hand side large so that it
659*        requires scaling.
660*
661         IF( UPPER ) THEN
662            DO 360 J = 1, N
663               CALL ZLARNV( 4, ISEED, J-1, A( 1, J ) )
664               A( J, J ) = ZERO
665  360       CONTINUE
666         ELSE
667            DO 370 J = 1, N
668               IF( J.LT.N )
669     $            CALL ZLARNV( 4, ISEED, N-J, A( J+1, J ) )
670               A( J, J ) = ZERO
671  370       CONTINUE
672         END IF
673*
674*        Set the right hand side so that the largest value is BIGNUM.
675*
676         CALL ZLARNV( 2, ISEED, N, B )
677         IY = IZAMAX( N, B, 1 )
678         BNORM = ABS( B( IY ) )
679         BSCAL = BIGNUM / MAX( ONE, BNORM )
680         CALL ZDSCAL( N, BSCAL, B, 1 )
681*
682      ELSE IF( IMAT.EQ.19 ) THEN
683*
684*        Type 19:  Generate a triangular matrix with elements between
685*        BIGNUM/(n-1) and BIGNUM so that at least one of the column
686*        norms will exceed BIGNUM.
687*        1/3/91:  ZLATRS no longer can handle this case
688*
689         TLEFT = BIGNUM / MAX( ONE, DBLE( N-1 ) )
690         TSCAL = BIGNUM*( DBLE( N-1 ) / MAX( ONE, DBLE( N ) ) )
691         IF( UPPER ) THEN
692            DO 390 J = 1, N
693               CALL ZLARNV( 5, ISEED, J, A( 1, J ) )
694               CALL DLARNV( 1, ISEED, J, RWORK )
695               DO 380 I = 1, J
696                  A( I, J ) = A( I, J )*( TLEFT+RWORK( I )*TSCAL )
697  380          CONTINUE
698  390       CONTINUE
699         ELSE
700            DO 410 J = 1, N
701               CALL ZLARNV( 5, ISEED, N-J+1, A( J, J ) )
702               CALL DLARNV( 1, ISEED, N-J+1, RWORK )
703               DO 400 I = J, N
704                  A( I, J ) = A( I, J )*( TLEFT+RWORK( I-J+1 )*TSCAL )
705  400          CONTINUE
706  410       CONTINUE
707         END IF
708         CALL ZLARNV( 2, ISEED, N, B )
709         CALL ZDSCAL( N, TWO, B, 1 )
710      END IF
711*
712*     Flip the matrix if the transpose will be used.
713*
714      IF( .NOT.LSAME( TRANS, 'N' ) ) THEN
715         IF( UPPER ) THEN
716            DO 420 J = 1, N / 2
717               CALL ZSWAP( N-2*J+1, A( J, J ), LDA, A( J+1, N-J+1 ),
718     $                     -1 )
719  420       CONTINUE
720         ELSE
721            DO 430 J = 1, N / 2
722               CALL ZSWAP( N-2*J+1, A( J, J ), 1, A( N-J+1, J+1 ),
723     $                     -LDA )
724  430       CONTINUE
725         END IF
726      END IF
727*
728      RETURN
729*
730*     End of ZLATTR
731*
732      END
733