1*> \brief \b ZPBT01 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8* Definition: 9* =========== 10* 11* SUBROUTINE ZPBT01( UPLO, N, KD, A, LDA, AFAC, LDAFAC, RWORK, 12* RESID ) 13* 14* .. Scalar Arguments .. 15* CHARACTER UPLO 16* INTEGER KD, LDA, LDAFAC, N 17* DOUBLE PRECISION RESID 18* .. 19* .. Array Arguments .. 20* DOUBLE PRECISION RWORK( * ) 21* COMPLEX*16 A( LDA, * ), AFAC( LDAFAC, * ) 22* .. 23* 24* 25*> \par Purpose: 26* ============= 27*> 28*> \verbatim 29*> 30*> ZPBT01 reconstructs a Hermitian positive definite band matrix A from 31*> its L*L' or U'*U factorization and computes the residual 32*> norm( L*L' - A ) / ( N * norm(A) * EPS ) or 33*> norm( U'*U - A ) / ( N * norm(A) * EPS ), 34*> where EPS is the machine epsilon, L' is the conjugate transpose of 35*> L, and U' is the conjugate transpose of U. 36*> \endverbatim 37* 38* Arguments: 39* ========== 40* 41*> \param[in] UPLO 42*> \verbatim 43*> UPLO is CHARACTER*1 44*> Specifies whether the upper or lower triangular part of the 45*> Hermitian matrix A is stored: 46*> = 'U': Upper triangular 47*> = 'L': Lower triangular 48*> \endverbatim 49*> 50*> \param[in] N 51*> \verbatim 52*> N is INTEGER 53*> The number of rows and columns of the matrix A. N >= 0. 54*> \endverbatim 55*> 56*> \param[in] KD 57*> \verbatim 58*> KD is INTEGER 59*> The number of super-diagonals of the matrix A if UPLO = 'U', 60*> or the number of sub-diagonals if UPLO = 'L'. KD >= 0. 61*> \endverbatim 62*> 63*> \param[in] A 64*> \verbatim 65*> A is COMPLEX*16 array, dimension (LDA,N) 66*> The original Hermitian band matrix A. If UPLO = 'U', the 67*> upper triangular part of A is stored as a band matrix; if 68*> UPLO = 'L', the lower triangular part of A is stored. The 69*> columns of the appropriate triangle are stored in the columns 70*> of A and the diagonals of the triangle are stored in the rows 71*> of A. See ZPBTRF for further details. 72*> \endverbatim 73*> 74*> \param[in] LDA 75*> \verbatim 76*> LDA is INTEGER. 77*> The leading dimension of the array A. LDA >= max(1,KD+1). 78*> \endverbatim 79*> 80*> \param[in] AFAC 81*> \verbatim 82*> AFAC is COMPLEX*16 array, dimension (LDAFAC,N) 83*> The factored form of the matrix A. AFAC contains the factor 84*> L or U from the L*L' or U'*U factorization in band storage 85*> format, as computed by ZPBTRF. 86*> \endverbatim 87*> 88*> \param[in] LDAFAC 89*> \verbatim 90*> LDAFAC is INTEGER 91*> The leading dimension of the array AFAC. 92*> LDAFAC >= max(1,KD+1). 93*> \endverbatim 94*> 95*> \param[out] RWORK 96*> \verbatim 97*> RWORK is DOUBLE PRECISION array, dimension (N) 98*> \endverbatim 99*> 100*> \param[out] RESID 101*> \verbatim 102*> RESID is DOUBLE PRECISION 103*> If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS ) 104*> If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS ) 105*> \endverbatim 106* 107* Authors: 108* ======== 109* 110*> \author Univ. of Tennessee 111*> \author Univ. of California Berkeley 112*> \author Univ. of Colorado Denver 113*> \author NAG Ltd. 114* 115*> \ingroup complex16_lin 116* 117* ===================================================================== 118 SUBROUTINE ZPBT01( UPLO, N, KD, A, LDA, AFAC, LDAFAC, RWORK, 119 $ RESID ) 120* 121* -- LAPACK test routine -- 122* -- LAPACK is a software package provided by Univ. of Tennessee, -- 123* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 124* 125* .. Scalar Arguments .. 126 CHARACTER UPLO 127 INTEGER KD, LDA, LDAFAC, N 128 DOUBLE PRECISION RESID 129* .. 130* .. Array Arguments .. 131 DOUBLE PRECISION RWORK( * ) 132 COMPLEX*16 A( LDA, * ), AFAC( LDAFAC, * ) 133* .. 134* 135* ===================================================================== 136* 137* 138* .. Parameters .. 139 DOUBLE PRECISION ZERO, ONE 140 PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) 141* .. 142* .. Local Scalars .. 143 INTEGER I, J, K, KC, KLEN, ML, MU 144 DOUBLE PRECISION AKK, ANORM, EPS 145* .. 146* .. External Functions .. 147 LOGICAL LSAME 148 DOUBLE PRECISION DLAMCH, ZLANHB 149 COMPLEX*16 ZDOTC 150 EXTERNAL LSAME, DLAMCH, ZLANHB, ZDOTC 151* .. 152* .. External Subroutines .. 153 EXTERNAL ZDSCAL, ZHER, ZTRMV 154* .. 155* .. Intrinsic Functions .. 156 INTRINSIC DBLE, DIMAG, MAX, MIN 157* .. 158* .. Executable Statements .. 159* 160* Quick exit if N = 0. 161* 162 IF( N.LE.0 ) THEN 163 RESID = ZERO 164 RETURN 165 END IF 166* 167* Exit with RESID = 1/EPS if ANORM = 0. 168* 169 EPS = DLAMCH( 'Epsilon' ) 170 ANORM = ZLANHB( '1', UPLO, N, KD, A, LDA, RWORK ) 171 IF( ANORM.LE.ZERO ) THEN 172 RESID = ONE / EPS 173 RETURN 174 END IF 175* 176* Check the imaginary parts of the diagonal elements and return with 177* an error code if any are nonzero. 178* 179 IF( LSAME( UPLO, 'U' ) ) THEN 180 DO 10 J = 1, N 181 IF( DIMAG( AFAC( KD+1, J ) ).NE.ZERO ) THEN 182 RESID = ONE / EPS 183 RETURN 184 END IF 185 10 CONTINUE 186 ELSE 187 DO 20 J = 1, N 188 IF( DIMAG( AFAC( 1, J ) ).NE.ZERO ) THEN 189 RESID = ONE / EPS 190 RETURN 191 END IF 192 20 CONTINUE 193 END IF 194* 195* Compute the product U'*U, overwriting U. 196* 197 IF( LSAME( UPLO, 'U' ) ) THEN 198 DO 30 K = N, 1, -1 199 KC = MAX( 1, KD+2-K ) 200 KLEN = KD + 1 - KC 201* 202* Compute the (K,K) element of the result. 203* 204 AKK = ZDOTC( KLEN+1, AFAC( KC, K ), 1, AFAC( KC, K ), 1 ) 205 AFAC( KD+1, K ) = AKK 206* 207* Compute the rest of column K. 208* 209 IF( KLEN.GT.0 ) 210 $ CALL ZTRMV( 'Upper', 'Conjugate', 'Non-unit', KLEN, 211 $ AFAC( KD+1, K-KLEN ), LDAFAC-1, 212 $ AFAC( KC, K ), 1 ) 213* 214 30 CONTINUE 215* 216* UPLO = 'L': Compute the product L*L', overwriting L. 217* 218 ELSE 219 DO 40 K = N, 1, -1 220 KLEN = MIN( KD, N-K ) 221* 222* Add a multiple of column K of the factor L to each of 223* columns K+1 through N. 224* 225 IF( KLEN.GT.0 ) 226 $ CALL ZHER( 'Lower', KLEN, ONE, AFAC( 2, K ), 1, 227 $ AFAC( 1, K+1 ), LDAFAC-1 ) 228* 229* Scale column K by the diagonal element. 230* 231 AKK = AFAC( 1, K ) 232 CALL ZDSCAL( KLEN+1, AKK, AFAC( 1, K ), 1 ) 233* 234 40 CONTINUE 235 END IF 236* 237* Compute the difference L*L' - A or U'*U - A. 238* 239 IF( LSAME( UPLO, 'U' ) ) THEN 240 DO 60 J = 1, N 241 MU = MAX( 1, KD+2-J ) 242 DO 50 I = MU, KD + 1 243 AFAC( I, J ) = AFAC( I, J ) - A( I, J ) 244 50 CONTINUE 245 60 CONTINUE 246 ELSE 247 DO 80 J = 1, N 248 ML = MIN( KD+1, N-J+1 ) 249 DO 70 I = 1, ML 250 AFAC( I, J ) = AFAC( I, J ) - A( I, J ) 251 70 CONTINUE 252 80 CONTINUE 253 END IF 254* 255* Compute norm( L*L' - A ) / ( N * norm(A) * EPS ) 256* 257 RESID = ZLANHB( '1', UPLO, N, KD, AFAC, LDAFAC, RWORK ) 258* 259 RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS 260* 261 RETURN 262* 263* End of ZPBT01 264* 265 END 266