1*> \brief \b ZSYT01 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8* Definition: 9* =========== 10* 11* SUBROUTINE ZSYT01_AA( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC, 12* RWORK, RESID ) 13* 14* .. Scalar Arguments .. 15* CHARACTER UPLO 16* INTEGER LDA, LDAFAC, LDC, N 17* DOUBLE PRECISION RESID 18* .. 19* .. Array Arguments .. 20* INTEGER IPIV( * ) 21* DOUBLE PRECISION RWORK( * ) 22* COMPLEX*16 A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * ), 23* .. 24* 25* 26*> \par Purpose: 27* ============= 28*> 29*> \verbatim 30*> 31*> ZSYT01 reconstructs a hermitian indefinite matrix A from its 32*> block L*D*L' or U*D*U' factorization and computes the residual 33*> norm( C - A ) / ( N * norm(A) * EPS ), 34*> where C is the reconstructed matrix and EPS is the machine epsilon. 35*> \endverbatim 36* 37* Arguments: 38* ========== 39* 40*> \param[in] UPLO 41*> \verbatim 42*> UPLO is CHARACTER*1 43*> Specifies whether the upper or lower triangular part of the 44*> hermitian matrix A is stored: 45*> = 'U': Upper triangular 46*> = 'L': Lower triangular 47*> \endverbatim 48*> 49*> \param[in] N 50*> \verbatim 51*> N is INTEGER 52*> The number of rows and columns of the matrix A. N >= 0. 53*> \endverbatim 54*> 55*> \param[in] A 56*> \verbatim 57*> A is COMPLEX*16 array, dimension (LDA,N) 58*> The original hermitian matrix A. 59*> \endverbatim 60*> 61*> \param[in] LDA 62*> \verbatim 63*> LDA is INTEGER 64*> The leading dimension of the array A. LDA >= max(1,N) 65*> \endverbatim 66*> 67*> \param[in] AFAC 68*> \verbatim 69*> AFAC is COMPLEX*16 array, dimension (LDAFAC,N) 70*> The factored form of the matrix A. AFAC contains the block 71*> diagonal matrix D and the multipliers used to obtain the 72*> factor L or U from the block L*D*L' or U*D*U' factorization 73*> as computed by ZSYTRF. 74*> \endverbatim 75*> 76*> \param[in] LDAFAC 77*> \verbatim 78*> LDAFAC is INTEGER 79*> The leading dimension of the array AFAC. LDAFAC >= max(1,N). 80*> \endverbatim 81*> 82*> \param[in] IPIV 83*> \verbatim 84*> IPIV is INTEGER array, dimension (N) 85*> The pivot indices from ZSYTRF. 86*> \endverbatim 87*> 88*> \param[out] C 89*> \verbatim 90*> C is COMPLEX*16 array, dimension (LDC,N) 91*> \endverbatim 92*> 93*> \param[in] LDC 94*> \verbatim 95*> LDC is INTEGER 96*> The leading dimension of the array C. LDC >= max(1,N). 97*> \endverbatim 98*> 99*> \param[out] RWORK 100*> \verbatim 101*> RWORK is COMPLEX*16 array, dimension (N) 102*> \endverbatim 103*> 104*> \param[out] RESID 105*> \verbatim 106*> RESID is COMPLEX*16 107*> If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS ) 108*> If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS ) 109*> \endverbatim 110* 111* Authors: 112* ======== 113* 114*> \author Univ. of Tennessee 115*> \author Univ. of California Berkeley 116*> \author Univ. of Colorado Denver 117*> \author NAG Ltd. 118* 119*> \ingroup complex16_lin 120* 121* ===================================================================== 122 SUBROUTINE ZSYT01_AA( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, 123 $ LDC, RWORK, RESID ) 124* 125* -- LAPACK test routine -- 126* -- LAPACK is a software package provided by Univ. of Tennessee, -- 127* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 128* 129* .. Scalar Arguments .. 130 CHARACTER UPLO 131 INTEGER LDA, LDAFAC, LDC, N 132 DOUBLE PRECISION RESID 133* .. 134* .. Array Arguments .. 135 INTEGER IPIV( * ) 136 COMPLEX*16 A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * ) 137 DOUBLE PRECISION RWORK( * ) 138* .. 139* 140* ===================================================================== 141* 142* .. Parameters .. 143 DOUBLE PRECISION ZERO, ONE 144 PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) 145 COMPLEX*16 CZERO, CONE 146 PARAMETER ( CZERO = 0.0E+0, CONE = 1.0E+0 ) 147* .. 148* .. Local Scalars .. 149 INTEGER I, J 150 DOUBLE PRECISION ANORM, EPS 151* .. 152* .. External Functions .. 153 LOGICAL LSAME 154 DOUBLE PRECISION DLAMCH, ZLANSY 155 EXTERNAL LSAME, DLAMCH, ZLANSY 156* .. 157* .. External Subroutines .. 158 EXTERNAL ZLASET, ZLAVSY 159* .. 160* .. Intrinsic Functions .. 161 INTRINSIC DBLE 162* .. 163* .. Executable Statements .. 164* 165* Quick exit if N = 0. 166* 167 IF( N.LE.0 ) THEN 168 RESID = ZERO 169 RETURN 170 END IF 171* 172* Determine EPS and the norm of A. 173* 174 EPS = DLAMCH( 'Epsilon' ) 175 ANORM = ZLANSY( '1', UPLO, N, A, LDA, RWORK ) 176* 177* Initialize C to the tridiagonal matrix T. 178* 179 CALL ZLASET( 'Full', N, N, CZERO, CZERO, C, LDC ) 180 CALL ZLACPY( 'F', 1, N, AFAC( 1, 1 ), LDAFAC+1, C( 1, 1 ), LDC+1 ) 181 IF( N.GT.1 ) THEN 182 IF( LSAME( UPLO, 'U' ) ) THEN 183 CALL ZLACPY( 'F', 1, N-1, AFAC( 1, 2 ), LDAFAC+1, C( 1, 2 ), 184 $ LDC+1 ) 185 CALL ZLACPY( 'F', 1, N-1, AFAC( 1, 2 ), LDAFAC+1, C( 2, 1 ), 186 $ LDC+1 ) 187 ELSE 188 CALL ZLACPY( 'F', 1, N-1, AFAC( 2, 1 ), LDAFAC+1, C( 1, 2 ), 189 $ LDC+1 ) 190 CALL ZLACPY( 'F', 1, N-1, AFAC( 2, 1 ), LDAFAC+1, C( 2, 1 ), 191 $ LDC+1 ) 192 ENDIF 193* 194* Call ZTRMM to form the product U' * D (or L * D ). 195* 196 IF( LSAME( UPLO, 'U' ) ) THEN 197 CALL ZTRMM( 'Left', UPLO, 'Transpose', 'Unit', N-1, N, 198 $ CONE, AFAC( 1, 2 ), LDAFAC, C( 2, 1 ), LDC ) 199 ELSE 200 CALL ZTRMM( 'Left', UPLO, 'No transpose', 'Unit', N-1, N, 201 $ CONE, AFAC( 2, 1 ), LDAFAC, C( 2, 1 ), LDC ) 202 END IF 203* 204* Call ZTRMM again to multiply by U (or L ). 205* 206 IF( LSAME( UPLO, 'U' ) ) THEN 207 CALL ZTRMM( 'Right', UPLO, 'No transpose', 'Unit', N, N-1, 208 $ CONE, AFAC( 1, 2 ), LDAFAC, C( 1, 2 ), LDC ) 209 ELSE 210 CALL ZTRMM( 'Right', UPLO, 'Transpose', 'Unit', N, N-1, 211 $ CONE, AFAC( 2, 1 ), LDAFAC, C( 1, 2 ), LDC ) 212 END IF 213 ENDIF 214* 215* Apply symmetric pivots 216* 217 DO J = N, 1, -1 218 I = IPIV( J ) 219 IF( I.NE.J ) 220 $ CALL ZSWAP( N, C( J, 1 ), LDC, C( I, 1 ), LDC ) 221 END DO 222 DO J = N, 1, -1 223 I = IPIV( J ) 224 IF( I.NE.J ) 225 $ CALL ZSWAP( N, C( 1, J ), 1, C( 1, I ), 1 ) 226 END DO 227* 228* 229* Compute the difference C - A . 230* 231 IF( LSAME( UPLO, 'U' ) ) THEN 232 DO J = 1, N 233 DO I = 1, J 234 C( I, J ) = C( I, J ) - A( I, J ) 235 END DO 236 END DO 237 ELSE 238 DO J = 1, N 239 DO I = J, N 240 C( I, J ) = C( I, J ) - A( I, J ) 241 END DO 242 END DO 243 END IF 244* 245* Compute norm( C - A ) / ( N * norm(A) * EPS ) 246* 247 RESID = ZLANSY( '1', UPLO, N, C, LDC, RWORK ) 248* 249 IF( ANORM.LE.ZERO ) THEN 250 IF( RESID.NE.ZERO ) 251 $ RESID = ONE / EPS 252 ELSE 253 RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS 254 END IF 255* 256 RETURN 257* 258* End of ZSYT01_AA 259* 260 END 261