1*> \brief \b ZTBT05 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8* Definition: 9* =========== 10* 11* SUBROUTINE ZTBT05( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, B, 12* LDB, X, LDX, XACT, LDXACT, FERR, BERR, RESLTS ) 13* 14* .. Scalar Arguments .. 15* CHARACTER DIAG, TRANS, UPLO 16* INTEGER KD, LDAB, LDB, LDX, LDXACT, N, NRHS 17* .. 18* .. Array Arguments .. 19* DOUBLE PRECISION BERR( * ), FERR( * ), RESLTS( * ) 20* COMPLEX*16 AB( LDAB, * ), B( LDB, * ), X( LDX, * ), 21* $ XACT( LDXACT, * ) 22* .. 23* 24* 25*> \par Purpose: 26* ============= 27*> 28*> \verbatim 29*> 30*> ZTBT05 tests the error bounds from iterative refinement for the 31*> computed solution to a system of equations A*X = B, where A is a 32*> triangular band matrix. 33*> 34*> RESLTS(1) = test of the error bound 35*> = norm(X - XACT) / ( norm(X) * FERR ) 36*> 37*> A large value is returned if this ratio is not less than one. 38*> 39*> RESLTS(2) = residual from the iterative refinement routine 40*> = the maximum of BERR / ( NZ*EPS + (*) ), where 41*> (*) = NZ*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i ) 42*> and NZ = max. number of nonzeros in any row of A, plus 1 43*> \endverbatim 44* 45* Arguments: 46* ========== 47* 48*> \param[in] UPLO 49*> \verbatim 50*> UPLO is CHARACTER*1 51*> Specifies whether the matrix A is upper or lower triangular. 52*> = 'U': Upper triangular 53*> = 'L': Lower triangular 54*> \endverbatim 55*> 56*> \param[in] TRANS 57*> \verbatim 58*> TRANS is CHARACTER*1 59*> Specifies the form of the system of equations. 60*> = 'N': A * X = B (No transpose) 61*> = 'T': A'* X = B (Transpose) 62*> = 'C': A'* X = B (Conjugate transpose = Transpose) 63*> \endverbatim 64*> 65*> \param[in] DIAG 66*> \verbatim 67*> DIAG is CHARACTER*1 68*> Specifies whether or not the matrix A is unit triangular. 69*> = 'N': Non-unit triangular 70*> = 'U': Unit triangular 71*> \endverbatim 72*> 73*> \param[in] N 74*> \verbatim 75*> N is INTEGER 76*> The number of rows of the matrices X, B, and XACT, and the 77*> order of the matrix A. N >= 0. 78*> \endverbatim 79*> 80*> \param[in] KD 81*> \verbatim 82*> KD is INTEGER 83*> The number of super-diagonals of the matrix A if UPLO = 'U', 84*> or the number of sub-diagonals if UPLO = 'L'. KD >= 0. 85*> \endverbatim 86*> 87*> \param[in] NRHS 88*> \verbatim 89*> NRHS is INTEGER 90*> The number of columns of the matrices X, B, and XACT. 91*> NRHS >= 0. 92*> \endverbatim 93*> 94*> \param[in] AB 95*> \verbatim 96*> AB is COMPLEX*16 array, dimension (LDAB,N) 97*> The upper or lower triangular band matrix A, stored in the 98*> first kd+1 rows of the array. The j-th column of A is stored 99*> in the j-th column of the array AB as follows: 100*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; 101*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). 102*> If DIAG = 'U', the diagonal elements of A are not referenced 103*> and are assumed to be 1. 104*> \endverbatim 105*> 106*> \param[in] LDAB 107*> \verbatim 108*> LDAB is INTEGER 109*> The leading dimension of the array AB. LDAB >= KD+1. 110*> \endverbatim 111*> 112*> \param[in] B 113*> \verbatim 114*> B is COMPLEX*16 array, dimension (LDB,NRHS) 115*> The right hand side vectors for the system of linear 116*> equations. 117*> \endverbatim 118*> 119*> \param[in] LDB 120*> \verbatim 121*> LDB is INTEGER 122*> The leading dimension of the array B. LDB >= max(1,N). 123*> \endverbatim 124*> 125*> \param[in] X 126*> \verbatim 127*> X is COMPLEX*16 array, dimension (LDX,NRHS) 128*> The computed solution vectors. Each vector is stored as a 129*> column of the matrix X. 130*> \endverbatim 131*> 132*> \param[in] LDX 133*> \verbatim 134*> LDX is INTEGER 135*> The leading dimension of the array X. LDX >= max(1,N). 136*> \endverbatim 137*> 138*> \param[in] XACT 139*> \verbatim 140*> XACT is COMPLEX*16 array, dimension (LDX,NRHS) 141*> The exact solution vectors. Each vector is stored as a 142*> column of the matrix XACT. 143*> \endverbatim 144*> 145*> \param[in] LDXACT 146*> \verbatim 147*> LDXACT is INTEGER 148*> The leading dimension of the array XACT. LDXACT >= max(1,N). 149*> \endverbatim 150*> 151*> \param[in] FERR 152*> \verbatim 153*> FERR is DOUBLE PRECISION array, dimension (NRHS) 154*> The estimated forward error bounds for each solution vector 155*> X. If XTRUE is the true solution, FERR bounds the magnitude 156*> of the largest entry in (X - XTRUE) divided by the magnitude 157*> of the largest entry in X. 158*> \endverbatim 159*> 160*> \param[in] BERR 161*> \verbatim 162*> BERR is DOUBLE PRECISION array, dimension (NRHS) 163*> The componentwise relative backward error of each solution 164*> vector (i.e., the smallest relative change in any entry of A 165*> or B that makes X an exact solution). 166*> \endverbatim 167*> 168*> \param[out] RESLTS 169*> \verbatim 170*> RESLTS is DOUBLE PRECISION array, dimension (2) 171*> The maximum over the NRHS solution vectors of the ratios: 172*> RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR ) 173*> RESLTS(2) = BERR / ( NZ*EPS + (*) ) 174*> \endverbatim 175* 176* Authors: 177* ======== 178* 179*> \author Univ. of Tennessee 180*> \author Univ. of California Berkeley 181*> \author Univ. of Colorado Denver 182*> \author NAG Ltd. 183* 184*> \ingroup complex16_lin 185* 186* ===================================================================== 187 SUBROUTINE ZTBT05( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, B, 188 $ LDB, X, LDX, XACT, LDXACT, FERR, BERR, RESLTS ) 189* 190* -- LAPACK test routine -- 191* -- LAPACK is a software package provided by Univ. of Tennessee, -- 192* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 193* 194* .. Scalar Arguments .. 195 CHARACTER DIAG, TRANS, UPLO 196 INTEGER KD, LDAB, LDB, LDX, LDXACT, N, NRHS 197* .. 198* .. Array Arguments .. 199 DOUBLE PRECISION BERR( * ), FERR( * ), RESLTS( * ) 200 COMPLEX*16 AB( LDAB, * ), B( LDB, * ), X( LDX, * ), 201 $ XACT( LDXACT, * ) 202* .. 203* 204* ===================================================================== 205* 206* .. Parameters .. 207 DOUBLE PRECISION ZERO, ONE 208 PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) 209* .. 210* .. Local Scalars .. 211 LOGICAL NOTRAN, UNIT, UPPER 212 INTEGER I, IFU, IMAX, J, K, NZ 213 DOUBLE PRECISION AXBI, DIFF, EPS, ERRBND, OVFL, TMP, UNFL, XNORM 214 COMPLEX*16 ZDUM 215* .. 216* .. External Functions .. 217 LOGICAL LSAME 218 INTEGER IZAMAX 219 DOUBLE PRECISION DLAMCH 220 EXTERNAL LSAME, IZAMAX, DLAMCH 221* .. 222* .. Intrinsic Functions .. 223 INTRINSIC ABS, DBLE, DIMAG, MAX, MIN 224* .. 225* .. Statement Functions .. 226 DOUBLE PRECISION CABS1 227* .. 228* .. Statement Function definitions .. 229 CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) ) 230* .. 231* .. Executable Statements .. 232* 233* Quick exit if N = 0 or NRHS = 0. 234* 235 IF( N.LE.0 .OR. NRHS.LE.0 ) THEN 236 RESLTS( 1 ) = ZERO 237 RESLTS( 2 ) = ZERO 238 RETURN 239 END IF 240* 241 EPS = DLAMCH( 'Epsilon' ) 242 UNFL = DLAMCH( 'Safe minimum' ) 243 OVFL = ONE / UNFL 244 UPPER = LSAME( UPLO, 'U' ) 245 NOTRAN = LSAME( TRANS, 'N' ) 246 UNIT = LSAME( DIAG, 'U' ) 247 NZ = MIN( KD, N-1 ) + 1 248* 249* Test 1: Compute the maximum of 250* norm(X - XACT) / ( norm(X) * FERR ) 251* over all the vectors X and XACT using the infinity-norm. 252* 253 ERRBND = ZERO 254 DO 30 J = 1, NRHS 255 IMAX = IZAMAX( N, X( 1, J ), 1 ) 256 XNORM = MAX( CABS1( X( IMAX, J ) ), UNFL ) 257 DIFF = ZERO 258 DO 10 I = 1, N 259 DIFF = MAX( DIFF, CABS1( X( I, J )-XACT( I, J ) ) ) 260 10 CONTINUE 261* 262 IF( XNORM.GT.ONE ) THEN 263 GO TO 20 264 ELSE IF( DIFF.LE.OVFL*XNORM ) THEN 265 GO TO 20 266 ELSE 267 ERRBND = ONE / EPS 268 GO TO 30 269 END IF 270* 271 20 CONTINUE 272 IF( DIFF / XNORM.LE.FERR( J ) ) THEN 273 ERRBND = MAX( ERRBND, ( DIFF / XNORM ) / FERR( J ) ) 274 ELSE 275 ERRBND = ONE / EPS 276 END IF 277 30 CONTINUE 278 RESLTS( 1 ) = ERRBND 279* 280* Test 2: Compute the maximum of BERR / ( NZ*EPS + (*) ), where 281* (*) = NZ*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i ) 282* 283 IFU = 0 284 IF( UNIT ) 285 $ IFU = 1 286 DO 90 K = 1, NRHS 287 DO 80 I = 1, N 288 TMP = CABS1( B( I, K ) ) 289 IF( UPPER ) THEN 290 IF( .NOT.NOTRAN ) THEN 291 DO 40 J = MAX( I-KD, 1 ), I - IFU 292 TMP = TMP + CABS1( AB( KD+1-I+J, I ) )* 293 $ CABS1( X( J, K ) ) 294 40 CONTINUE 295 IF( UNIT ) 296 $ TMP = TMP + CABS1( X( I, K ) ) 297 ELSE 298 IF( UNIT ) 299 $ TMP = TMP + CABS1( X( I, K ) ) 300 DO 50 J = I + IFU, MIN( I+KD, N ) 301 TMP = TMP + CABS1( AB( KD+1+I-J, J ) )* 302 $ CABS1( X( J, K ) ) 303 50 CONTINUE 304 END IF 305 ELSE 306 IF( NOTRAN ) THEN 307 DO 60 J = MAX( I-KD, 1 ), I - IFU 308 TMP = TMP + CABS1( AB( 1+I-J, J ) )* 309 $ CABS1( X( J, K ) ) 310 60 CONTINUE 311 IF( UNIT ) 312 $ TMP = TMP + CABS1( X( I, K ) ) 313 ELSE 314 IF( UNIT ) 315 $ TMP = TMP + CABS1( X( I, K ) ) 316 DO 70 J = I + IFU, MIN( I+KD, N ) 317 TMP = TMP + CABS1( AB( 1+J-I, I ) )* 318 $ CABS1( X( J, K ) ) 319 70 CONTINUE 320 END IF 321 END IF 322 IF( I.EQ.1 ) THEN 323 AXBI = TMP 324 ELSE 325 AXBI = MIN( AXBI, TMP ) 326 END IF 327 80 CONTINUE 328 TMP = BERR( K ) / ( NZ*EPS+NZ*UNFL / MAX( AXBI, NZ*UNFL ) ) 329 IF( K.EQ.1 ) THEN 330 RESLTS( 2 ) = TMP 331 ELSE 332 RESLTS( 2 ) = MAX( RESLTS( 2 ), TMP ) 333 END IF 334 90 CONTINUE 335* 336 RETURN 337* 338* End of ZTBT05 339* 340 END 341