1*> \brief \b DLATME
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*  Definition:
9*  ===========
10*
11*       SUBROUTINE DLATME( N, DIST, ISEED, D, MODE, COND, DMAX, EI,
12*         RSIGN,
13*                          UPPER, SIM, DS, MODES, CONDS, KL, KU, ANORM,
14*         A,
15*                          LDA, WORK, INFO )
16*
17*       .. Scalar Arguments ..
18*       CHARACTER          DIST, RSIGN, SIM, UPPER
19*       INTEGER            INFO, KL, KU, LDA, MODE, MODES, N
20*       DOUBLE PRECISION   ANORM, COND, CONDS, DMAX
21*       ..
22*       .. Array Arguments ..
23*       CHARACTER          EI( * )
24*       INTEGER            ISEED( 4 )
25*       DOUBLE PRECISION   A( LDA, * ), D( * ), DS( * ), WORK( * )
26*       ..
27*
28*
29*> \par Purpose:
30*  =============
31*>
32*> \verbatim
33*>
34*>    DLATME generates random non-symmetric square matrices with
35*>    specified eigenvalues for testing LAPACK programs.
36*>
37*>    DLATME operates by applying the following sequence of
38*>    operations:
39*>
40*>    1. Set the diagonal to D, where D may be input or
41*>         computed according to MODE, COND, DMAX, and RSIGN
42*>         as described below.
43*>
44*>    2. If complex conjugate pairs are desired (MODE=0 and EI(1)='R',
45*>         or MODE=5), certain pairs of adjacent elements of D are
46*>         interpreted as the real and complex parts of a complex
47*>         conjugate pair; A thus becomes block diagonal, with 1x1
48*>         and 2x2 blocks.
49*>
50*>    3. If UPPER='T', the upper triangle of A is set to random values
51*>         out of distribution DIST.
52*>
53*>    4. If SIM='T', A is multiplied on the left by a random matrix
54*>         X, whose singular values are specified by DS, MODES, and
55*>         CONDS, and on the right by X inverse.
56*>
57*>    5. If KL < N-1, the lower bandwidth is reduced to KL using
58*>         Householder transformations.  If KU < N-1, the upper
59*>         bandwidth is reduced to KU.
60*>
61*>    6. If ANORM is not negative, the matrix is scaled to have
62*>         maximum-element-norm ANORM.
63*>
64*>    (Note: since the matrix cannot be reduced beyond Hessenberg form,
65*>     no packing options are available.)
66*> \endverbatim
67*
68*  Arguments:
69*  ==========
70*
71*> \param[in] N
72*> \verbatim
73*>          N is INTEGER
74*>           The number of columns (or rows) of A. Not modified.
75*> \endverbatim
76*>
77*> \param[in] DIST
78*> \verbatim
79*>          DIST is CHARACTER*1
80*>           On entry, DIST specifies the type of distribution to be used
81*>           to generate the random eigen-/singular values, and for the
82*>           upper triangle (see UPPER).
83*>           'U' => UNIFORM( 0, 1 )  ( 'U' for uniform )
84*>           'S' => UNIFORM( -1, 1 ) ( 'S' for symmetric )
85*>           'N' => NORMAL( 0, 1 )   ( 'N' for normal )
86*>           Not modified.
87*> \endverbatim
88*>
89*> \param[in,out] ISEED
90*> \verbatim
91*>          ISEED is INTEGER array, dimension ( 4 )
92*>           On entry ISEED specifies the seed of the random number
93*>           generator. They should lie between 0 and 4095 inclusive,
94*>           and ISEED(4) should be odd. The random number generator
95*>           uses a linear congruential sequence limited to small
96*>           integers, and so should produce machine independent
97*>           random numbers. The values of ISEED are changed on
98*>           exit, and can be used in the next call to DLATME
99*>           to continue the same random number sequence.
100*>           Changed on exit.
101*> \endverbatim
102*>
103*> \param[in,out] D
104*> \verbatim
105*>          D is DOUBLE PRECISION array, dimension ( N )
106*>           This array is used to specify the eigenvalues of A.  If
107*>           MODE=0, then D is assumed to contain the eigenvalues (but
108*>           see the description of EI), otherwise they will be
109*>           computed according to MODE, COND, DMAX, and RSIGN and
110*>           placed in D.
111*>           Modified if MODE is nonzero.
112*> \endverbatim
113*>
114*> \param[in] MODE
115*> \verbatim
116*>          MODE is INTEGER
117*>           On entry this describes how the eigenvalues are to
118*>           be specified:
119*>           MODE = 0 means use D (with EI) as input
120*>           MODE = 1 sets D(1)=1 and D(2:N)=1.0/COND
121*>           MODE = 2 sets D(1:N-1)=1 and D(N)=1.0/COND
122*>           MODE = 3 sets D(I)=COND**(-(I-1)/(N-1))
123*>           MODE = 4 sets D(i)=1 - (i-1)/(N-1)*(1 - 1/COND)
124*>           MODE = 5 sets D to random numbers in the range
125*>                    ( 1/COND , 1 ) such that their logarithms
126*>                    are uniformly distributed.  Each odd-even pair
127*>                    of elements will be either used as two real
128*>                    eigenvalues or as the real and imaginary part
129*>                    of a complex conjugate pair of eigenvalues;
130*>                    the choice of which is done is random, with
131*>                    50-50 probability, for each pair.
132*>           MODE = 6 set D to random numbers from same distribution
133*>                    as the rest of the matrix.
134*>           MODE < 0 has the same meaning as ABS(MODE), except that
135*>              the order of the elements of D is reversed.
136*>           Thus if MODE is between 1 and 4, D has entries ranging
137*>              from 1 to 1/COND, if between -1 and -4, D has entries
138*>              ranging from 1/COND to 1,
139*>           Not modified.
140*> \endverbatim
141*>
142*> \param[in] COND
143*> \verbatim
144*>          COND is DOUBLE PRECISION
145*>           On entry, this is used as described under MODE above.
146*>           If used, it must be >= 1. Not modified.
147*> \endverbatim
148*>
149*> \param[in] DMAX
150*> \verbatim
151*>          DMAX is DOUBLE PRECISION
152*>           If MODE is neither -6, 0 nor 6, the contents of D, as
153*>           computed according to MODE and COND, will be scaled by
154*>           DMAX / max(abs(D(i))).  Note that DMAX need not be
155*>           positive: if DMAX is negative (or zero), D will be
156*>           scaled by a negative number (or zero).
157*>           Not modified.
158*> \endverbatim
159*>
160*> \param[in] EI
161*> \verbatim
162*>          EI is CHARACTER*1 array, dimension ( N )
163*>           If MODE is 0, and EI(1) is not ' ' (space character),
164*>           this array specifies which elements of D (on input) are
165*>           real eigenvalues and which are the real and imaginary parts
166*>           of a complex conjugate pair of eigenvalues.  The elements
167*>           of EI may then only have the values 'R' and 'I'.  If
168*>           EI(j)='R' and EI(j+1)='I', then the j-th eigenvalue is
169*>           CMPLX( D(j) , D(j+1) ), and the (j+1)-th is the complex
170*>           conjugate thereof.  If EI(j)=EI(j+1)='R', then the j-th
171*>           eigenvalue is D(j) (i.e., real).  EI(1) may not be 'I',
172*>           nor may two adjacent elements of EI both have the value 'I'.
173*>           If MODE is not 0, then EI is ignored.  If MODE is 0 and
174*>           EI(1)=' ', then the eigenvalues will all be real.
175*>           Not modified.
176*> \endverbatim
177*>
178*> \param[in] RSIGN
179*> \verbatim
180*>          RSIGN is CHARACTER*1
181*>           If MODE is not 0, 6, or -6, and RSIGN='T', then the
182*>           elements of D, as computed according to MODE and COND, will
183*>           be multiplied by a random sign (+1 or -1).  If RSIGN='F',
184*>           they will not be.  RSIGN may only have the values 'T' or
185*>           'F'.
186*>           Not modified.
187*> \endverbatim
188*>
189*> \param[in] UPPER
190*> \verbatim
191*>          UPPER is CHARACTER*1
192*>           If UPPER='T', then the elements of A above the diagonal
193*>           (and above the 2x2 diagonal blocks, if A has complex
194*>           eigenvalues) will be set to random numbers out of DIST.
195*>           If UPPER='F', they will not.  UPPER may only have the
196*>           values 'T' or 'F'.
197*>           Not modified.
198*> \endverbatim
199*>
200*> \param[in] SIM
201*> \verbatim
202*>          SIM is CHARACTER*1
203*>           If SIM='T', then A will be operated on by a "similarity
204*>           transform", i.e., multiplied on the left by a matrix X and
205*>           on the right by X inverse.  X = U S V, where U and V are
206*>           random unitary matrices and S is a (diagonal) matrix of
207*>           singular values specified by DS, MODES, and CONDS.  If
208*>           SIM='F', then A will not be transformed.
209*>           Not modified.
210*> \endverbatim
211*>
212*> \param[in,out] DS
213*> \verbatim
214*>          DS is DOUBLE PRECISION array, dimension ( N )
215*>           This array is used to specify the singular values of X,
216*>           in the same way that D specifies the eigenvalues of A.
217*>           If MODE=0, the DS contains the singular values, which
218*>           may not be zero.
219*>           Modified if MODE is nonzero.
220*> \endverbatim
221*>
222*> \param[in] MODES
223*> \verbatim
224*>          MODES is INTEGER
225*> \endverbatim
226*>
227*> \param[in] CONDS
228*> \verbatim
229*>          CONDS is DOUBLE PRECISION
230*>           Same as MODE and COND, but for specifying the diagonal
231*>           of S.  MODES=-6 and +6 are not allowed (since they would
232*>           result in randomly ill-conditioned eigenvalues.)
233*> \endverbatim
234*>
235*> \param[in] KL
236*> \verbatim
237*>          KL is INTEGER
238*>           This specifies the lower bandwidth of the  matrix.  KL=1
239*>           specifies upper Hessenberg form.  If KL is at least N-1,
240*>           then A will have full lower bandwidth.  KL must be at
241*>           least 1.
242*>           Not modified.
243*> \endverbatim
244*>
245*> \param[in] KU
246*> \verbatim
247*>          KU is INTEGER
248*>           This specifies the upper bandwidth of the  matrix.  KU=1
249*>           specifies lower Hessenberg form.  If KU is at least N-1,
250*>           then A will have full upper bandwidth; if KU and KL
251*>           are both at least N-1, then A will be dense.  Only one of
252*>           KU and KL may be less than N-1.  KU must be at least 1.
253*>           Not modified.
254*> \endverbatim
255*>
256*> \param[in] ANORM
257*> \verbatim
258*>          ANORM is DOUBLE PRECISION
259*>           If ANORM is not negative, then A will be scaled by a non-
260*>           negative real number to make the maximum-element-norm of A
261*>           to be ANORM.
262*>           Not modified.
263*> \endverbatim
264*>
265*> \param[out] A
266*> \verbatim
267*>          A is DOUBLE PRECISION array, dimension ( LDA, N )
268*>           On exit A is the desired test matrix.
269*>           Modified.
270*> \endverbatim
271*>
272*> \param[in] LDA
273*> \verbatim
274*>          LDA is INTEGER
275*>           LDA specifies the first dimension of A as declared in the
276*>           calling program.  LDA must be at least N.
277*>           Not modified.
278*> \endverbatim
279*>
280*> \param[out] WORK
281*> \verbatim
282*>          WORK is DOUBLE PRECISION array, dimension ( 3*N )
283*>           Workspace.
284*>           Modified.
285*> \endverbatim
286*>
287*> \param[out] INFO
288*> \verbatim
289*>          INFO is INTEGER
290*>           Error code.  On exit, INFO will be set to one of the
291*>           following values:
292*>             0 => normal return
293*>            -1 => N negative
294*>            -2 => DIST illegal string
295*>            -5 => MODE not in range -6 to 6
296*>            -6 => COND less than 1.0, and MODE neither -6, 0 nor 6
297*>            -8 => EI(1) is not ' ' or 'R', EI(j) is not 'R' or 'I', or
298*>                  two adjacent elements of EI are 'I'.
299*>            -9 => RSIGN is not 'T' or 'F'
300*>           -10 => UPPER is not 'T' or 'F'
301*>           -11 => SIM   is not 'T' or 'F'
302*>           -12 => MODES=0 and DS has a zero singular value.
303*>           -13 => MODES is not in the range -5 to 5.
304*>           -14 => MODES is nonzero and CONDS is less than 1.
305*>           -15 => KL is less than 1.
306*>           -16 => KU is less than 1, or KL and KU are both less than
307*>                  N-1.
308*>           -19 => LDA is less than N.
309*>            1  => Error return from DLATM1 (computing D)
310*>            2  => Cannot scale to DMAX (max. eigenvalue is 0)
311*>            3  => Error return from DLATM1 (computing DS)
312*>            4  => Error return from DLARGE
313*>            5  => Zero singular value from DLATM1.
314*> \endverbatim
315*
316*  Authors:
317*  ========
318*
319*> \author Univ. of Tennessee
320*> \author Univ. of California Berkeley
321*> \author Univ. of Colorado Denver
322*> \author NAG Ltd.
323*
324*> \date November 2011
325*
326*> \ingroup double_matgen
327*
328*  =====================================================================
329      SUBROUTINE DLATME( N, DIST, ISEED, D, MODE, COND, DMAX, EI,
330     $  RSIGN,
331     $                   UPPER, SIM, DS, MODES, CONDS, KL, KU, ANORM,
332     $  A,
333     $                   LDA, WORK, INFO )
334*
335*  -- LAPACK computational routine (version 3.4.0) --
336*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
337*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
338*     November 2011
339*
340*     .. Scalar Arguments ..
341      CHARACTER          DIST, RSIGN, SIM, UPPER
342      INTEGER            INFO, KL, KU, LDA, MODE, MODES, N
343      DOUBLE PRECISION   ANORM, COND, CONDS, DMAX
344*     ..
345*     .. Array Arguments ..
346      CHARACTER          EI( * )
347      INTEGER            ISEED( 4 )
348      DOUBLE PRECISION   A( LDA, * ), D( * ), DS( * ), WORK( * )
349*     ..
350*
351*  =====================================================================
352*
353*     .. Parameters ..
354      DOUBLE PRECISION   ZERO
355      PARAMETER          ( ZERO = 0.0D0 )
356      DOUBLE PRECISION   ONE
357      PARAMETER          ( ONE = 1.0D0 )
358      DOUBLE PRECISION   HALF
359      PARAMETER          ( HALF = 1.0D0 / 2.0D0 )
360*     ..
361*     .. Local Scalars ..
362      LOGICAL            BADEI, BADS, USEEI
363      INTEGER            I, IC, ICOLS, IDIST, IINFO, IR, IROWS, IRSIGN,
364     $                   ISIM, IUPPER, J, JC, JCR, JR
365      DOUBLE PRECISION   ALPHA, TAU, TEMP, XNORMS
366*     ..
367*     .. Local Arrays ..
368      DOUBLE PRECISION   TEMPA( 1 )
369*     ..
370*     .. External Functions ..
371      LOGICAL            LSAME
372      DOUBLE PRECISION   DLANGE, DLARAN
373      EXTERNAL           LSAME, DLANGE, DLARAN
374*     ..
375*     .. External Subroutines ..
376      EXTERNAL           DCOPY, DGEMV, DGER, DLARFG, DLARGE, DLARNV,
377     $                   DLASET, DLATM1, DSCAL, XERBLA
378*     ..
379*     .. Intrinsic Functions ..
380      INTRINSIC          ABS, MAX, MOD
381*     ..
382*     .. Executable Statements ..
383*
384*     1)      Decode and Test the input parameters.
385*             Initialize flags & seed.
386*
387      INFO = 0
388*
389*     Quick return if possible
390*
391      IF( N.EQ.0 )
392     $   RETURN
393*
394*     Decode DIST
395*
396      IF( LSAME( DIST, 'U' ) ) THEN
397         IDIST = 1
398      ELSE IF( LSAME( DIST, 'S' ) ) THEN
399         IDIST = 2
400      ELSE IF( LSAME( DIST, 'N' ) ) THEN
401         IDIST = 3
402      ELSE
403         IDIST = -1
404      END IF
405*
406*     Check EI
407*
408      USEEI = .TRUE.
409      BADEI = .FALSE.
410      IF( LSAME( EI( 1 ), ' ' ) .OR. MODE.NE.0 ) THEN
411         USEEI = .FALSE.
412      ELSE
413         IF( LSAME( EI( 1 ), 'R' ) ) THEN
414            DO 10 J = 2, N
415               IF( LSAME( EI( J ), 'I' ) ) THEN
416                  IF( LSAME( EI( J-1 ), 'I' ) )
417     $               BADEI = .TRUE.
418               ELSE
419                  IF( .NOT.LSAME( EI( J ), 'R' ) )
420     $               BADEI = .TRUE.
421               END IF
422   10       CONTINUE
423         ELSE
424            BADEI = .TRUE.
425         END IF
426      END IF
427*
428*     Decode RSIGN
429*
430      IF( LSAME( RSIGN, 'T' ) ) THEN
431         IRSIGN = 1
432      ELSE IF( LSAME( RSIGN, 'F' ) ) THEN
433         IRSIGN = 0
434      ELSE
435         IRSIGN = -1
436      END IF
437*
438*     Decode UPPER
439*
440      IF( LSAME( UPPER, 'T' ) ) THEN
441         IUPPER = 1
442      ELSE IF( LSAME( UPPER, 'F' ) ) THEN
443         IUPPER = 0
444      ELSE
445         IUPPER = -1
446      END IF
447*
448*     Decode SIM
449*
450      IF( LSAME( SIM, 'T' ) ) THEN
451         ISIM = 1
452      ELSE IF( LSAME( SIM, 'F' ) ) THEN
453         ISIM = 0
454      ELSE
455         ISIM = -1
456      END IF
457*
458*     Check DS, if MODES=0 and ISIM=1
459*
460      BADS = .FALSE.
461      IF( MODES.EQ.0 .AND. ISIM.EQ.1 ) THEN
462         DO 20 J = 1, N
463            IF( DS( J ).EQ.ZERO )
464     $         BADS = .TRUE.
465   20    CONTINUE
466      END IF
467*
468*     Set INFO if an error
469*
470      IF( N.LT.0 ) THEN
471         INFO = -1
472      ELSE IF( IDIST.EQ.-1 ) THEN
473         INFO = -2
474      ELSE IF( ABS( MODE ).GT.6 ) THEN
475         INFO = -5
476      ELSE IF( ( MODE.NE.0 .AND. ABS( MODE ).NE.6 ) .AND. COND.LT.ONE )
477     $          THEN
478         INFO = -6
479      ELSE IF( BADEI ) THEN
480         INFO = -8
481      ELSE IF( IRSIGN.EQ.-1 ) THEN
482         INFO = -9
483      ELSE IF( IUPPER.EQ.-1 ) THEN
484         INFO = -10
485      ELSE IF( ISIM.EQ.-1 ) THEN
486         INFO = -11
487      ELSE IF( BADS ) THEN
488         INFO = -12
489      ELSE IF( ISIM.EQ.1 .AND. ABS( MODES ).GT.5 ) THEN
490         INFO = -13
491      ELSE IF( ISIM.EQ.1 .AND. MODES.NE.0 .AND. CONDS.LT.ONE ) THEN
492         INFO = -14
493      ELSE IF( KL.LT.1 ) THEN
494         INFO = -15
495      ELSE IF( KU.LT.1 .OR. ( KU.LT.N-1 .AND. KL.LT.N-1 ) ) THEN
496         INFO = -16
497      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
498         INFO = -19
499      END IF
500*
501      IF( INFO.NE.0 ) THEN
502         CALL XERBLA( 'DLATME', -INFO )
503         RETURN
504      END IF
505*
506*     Initialize random number generator
507*
508      DO 30 I = 1, 4
509         ISEED( I ) = MOD( ABS( ISEED( I ) ), 4096 )
510   30 CONTINUE
511*
512      IF( MOD( ISEED( 4 ), 2 ).NE.1 )
513     $   ISEED( 4 ) = ISEED( 4 ) + 1
514*
515*     2)      Set up diagonal of A
516*
517*             Compute D according to COND and MODE
518*
519      CALL DLATM1( MODE, COND, IRSIGN, IDIST, ISEED, D, N, IINFO )
520      IF( IINFO.NE.0 ) THEN
521         INFO = 1
522         RETURN
523      END IF
524      IF( MODE.NE.0 .AND. ABS( MODE ).NE.6 ) THEN
525*
526*        Scale by DMAX
527*
528         TEMP = ABS( D( 1 ) )
529         DO 40 I = 2, N
530            TEMP = MAX( TEMP, ABS( D( I ) ) )
531   40    CONTINUE
532*
533         IF( TEMP.GT.ZERO ) THEN
534            ALPHA = DMAX / TEMP
535         ELSE IF( DMAX.NE.ZERO ) THEN
536            INFO = 2
537            RETURN
538         ELSE
539            ALPHA = ZERO
540         END IF
541*
542         CALL DSCAL( N, ALPHA, D, 1 )
543*
544      END IF
545*
546      CALL DLASET( 'Full', N, N, ZERO, ZERO, A, LDA )
547      CALL DCOPY( N, D, 1, A, LDA+1 )
548*
549*     Set up complex conjugate pairs
550*
551      IF( MODE.EQ.0 ) THEN
552         IF( USEEI ) THEN
553            DO 50 J = 2, N
554               IF( LSAME( EI( J ), 'I' ) ) THEN
555                  A( J-1, J ) = A( J, J )
556                  A( J, J-1 ) = -A( J, J )
557                  A( J, J ) = A( J-1, J-1 )
558               END IF
559   50       CONTINUE
560         END IF
561*
562      ELSE IF( ABS( MODE ).EQ.5 ) THEN
563*
564         DO 60 J = 2, N, 2
565            IF( DLARAN( ISEED ).GT.HALF ) THEN
566               A( J-1, J ) = A( J, J )
567               A( J, J-1 ) = -A( J, J )
568               A( J, J ) = A( J-1, J-1 )
569            END IF
570   60    CONTINUE
571      END IF
572*
573*     3)      If UPPER='T', set upper triangle of A to random numbers.
574*             (but don't modify the corners of 2x2 blocks.)
575*
576      IF( IUPPER.NE.0 ) THEN
577         DO 70 JC = 2, N
578            IF( A( JC-1, JC ).NE.ZERO ) THEN
579               JR = JC - 2
580            ELSE
581               JR = JC - 1
582            END IF
583            CALL DLARNV( IDIST, ISEED, JR, A( 1, JC ) )
584   70    CONTINUE
585      END IF
586*
587*     4)      If SIM='T', apply similarity transformation.
588*
589*                                -1
590*             Transform is  X A X  , where X = U S V, thus
591*
592*             it is  U S V A V' (1/S) U'
593*
594      IF( ISIM.NE.0 ) THEN
595*
596*        Compute S (singular values of the eigenvector matrix)
597*        according to CONDS and MODES
598*
599         CALL DLATM1( MODES, CONDS, 0, 0, ISEED, DS, N, IINFO )
600         IF( IINFO.NE.0 ) THEN
601            INFO = 3
602            RETURN
603         END IF
604*
605*        Multiply by V and V'
606*
607         CALL DLARGE( N, A, LDA, ISEED, WORK, IINFO )
608         IF( IINFO.NE.0 ) THEN
609            INFO = 4
610            RETURN
611         END IF
612*
613*        Multiply by S and (1/S)
614*
615         DO 80 J = 1, N
616            CALL DSCAL( N, DS( J ), A( J, 1 ), LDA )
617            IF( DS( J ).NE.ZERO ) THEN
618               CALL DSCAL( N, ONE / DS( J ), A( 1, J ), 1 )
619            ELSE
620               INFO = 5
621               RETURN
622            END IF
623   80    CONTINUE
624*
625*        Multiply by U and U'
626*
627         CALL DLARGE( N, A, LDA, ISEED, WORK, IINFO )
628         IF( IINFO.NE.0 ) THEN
629            INFO = 4
630            RETURN
631         END IF
632      END IF
633*
634*     5)      Reduce the bandwidth.
635*
636      IF( KL.LT.N-1 ) THEN
637*
638*        Reduce bandwidth -- kill column
639*
640         DO 90 JCR = KL + 1, N - 1
641            IC = JCR - KL
642            IROWS = N + 1 - JCR
643            ICOLS = N + KL - JCR
644*
645            CALL DCOPY( IROWS, A( JCR, IC ), 1, WORK, 1 )
646            XNORMS = WORK( 1 )
647            CALL DLARFG( IROWS, XNORMS, WORK( 2 ), 1, TAU )
648            WORK( 1 ) = ONE
649*
650            CALL DGEMV( 'T', IROWS, ICOLS, ONE, A( JCR, IC+1 ), LDA,
651     $                  WORK, 1, ZERO, WORK( IROWS+1 ), 1 )
652            CALL DGER( IROWS, ICOLS, -TAU, WORK, 1, WORK( IROWS+1 ), 1,
653     $                 A( JCR, IC+1 ), LDA )
654*
655            CALL DGEMV( 'N', N, IROWS, ONE, A( 1, JCR ), LDA, WORK, 1,
656     $                  ZERO, WORK( IROWS+1 ), 1 )
657            CALL DGER( N, IROWS, -TAU, WORK( IROWS+1 ), 1, WORK, 1,
658     $                 A( 1, JCR ), LDA )
659*
660            A( JCR, IC ) = XNORMS
661            CALL DLASET( 'Full', IROWS-1, 1, ZERO, ZERO, A( JCR+1, IC ),
662     $                   LDA )
663   90    CONTINUE
664      ELSE IF( KU.LT.N-1 ) THEN
665*
666*        Reduce upper bandwidth -- kill a row at a time.
667*
668         DO 100 JCR = KU + 1, N - 1
669            IR = JCR - KU
670            IROWS = N + KU - JCR
671            ICOLS = N + 1 - JCR
672*
673            CALL DCOPY( ICOLS, A( IR, JCR ), LDA, WORK, 1 )
674            XNORMS = WORK( 1 )
675            CALL DLARFG( ICOLS, XNORMS, WORK( 2 ), 1, TAU )
676            WORK( 1 ) = ONE
677*
678            CALL DGEMV( 'N', IROWS, ICOLS, ONE, A( IR+1, JCR ), LDA,
679     $                  WORK, 1, ZERO, WORK( ICOLS+1 ), 1 )
680            CALL DGER( IROWS, ICOLS, -TAU, WORK( ICOLS+1 ), 1, WORK, 1,
681     $                 A( IR+1, JCR ), LDA )
682*
683            CALL DGEMV( 'C', ICOLS, N, ONE, A( JCR, 1 ), LDA, WORK, 1,
684     $                  ZERO, WORK( ICOLS+1 ), 1 )
685            CALL DGER( ICOLS, N, -TAU, WORK, 1, WORK( ICOLS+1 ), 1,
686     $                 A( JCR, 1 ), LDA )
687*
688            A( IR, JCR ) = XNORMS
689            CALL DLASET( 'Full', 1, ICOLS-1, ZERO, ZERO, A( IR, JCR+1 ),
690     $                   LDA )
691  100    CONTINUE
692      END IF
693*
694*     Scale the matrix to have norm ANORM
695*
696      IF( ANORM.GE.ZERO ) THEN
697         TEMP = DLANGE( 'M', N, N, A, LDA, TEMPA )
698         IF( TEMP.GT.ZERO ) THEN
699            ALPHA = ANORM / TEMP
700            DO 110 J = 1, N
701               CALL DSCAL( N, ALPHA, A( 1, J ), 1 )
702  110       CONTINUE
703         END IF
704      END IF
705*
706      RETURN
707*
708*     End of DLATME
709*
710      END
711