1*> \brief \b SGET52 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8* Definition: 9* =========== 10* 11* SUBROUTINE SGET52( LEFT, N, A, LDA, B, LDB, E, LDE, ALPHAR, 12* ALPHAI, BETA, WORK, RESULT ) 13* 14* .. Scalar Arguments .. 15* LOGICAL LEFT 16* INTEGER LDA, LDB, LDE, N 17* .. 18* .. Array Arguments .. 19* REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ), 20* $ B( LDB, * ), BETA( * ), E( LDE, * ), 21* $ RESULT( 2 ), WORK( * ) 22* .. 23* 24* 25*> \par Purpose: 26* ============= 27*> 28*> \verbatim 29*> 30*> SGET52 does an eigenvector check for the generalized eigenvalue 31*> problem. 32*> 33*> The basic test for right eigenvectors is: 34*> 35*> | b(j) A E(j) - a(j) B E(j) | 36*> RESULT(1) = max ------------------------------- 37*> j n ulp max( |b(j) A|, |a(j) B| ) 38*> 39*> using the 1-norm. Here, a(j)/b(j) = w is the j-th generalized 40*> eigenvalue of A - w B, or, equivalently, b(j)/a(j) = m is the j-th 41*> generalized eigenvalue of m A - B. 42*> 43*> For real eigenvalues, the test is straightforward. For complex 44*> eigenvalues, E(j) and a(j) are complex, represented by 45*> Er(j) + i*Ei(j) and ar(j) + i*ai(j), resp., so the test for that 46*> eigenvector becomes 47*> 48*> max( |Wr|, |Wi| ) 49*> -------------------------------------------- 50*> n ulp max( |b(j) A|, (|ar(j)|+|ai(j)|) |B| ) 51*> 52*> where 53*> 54*> Wr = b(j) A Er(j) - ar(j) B Er(j) + ai(j) B Ei(j) 55*> 56*> Wi = b(j) A Ei(j) - ai(j) B Er(j) - ar(j) B Ei(j) 57*> 58*> T T _ 59*> For left eigenvectors, A , B , a, and b are used. 60*> 61*> SGET52 also tests the normalization of E. Each eigenvector is 62*> supposed to be normalized so that the maximum "absolute value" 63*> of its elements is 1, where in this case, "absolute value" 64*> of a complex value x is |Re(x)| + |Im(x)| ; let us call this 65*> maximum "absolute value" norm of a vector v M(v). 66*> if a(j)=b(j)=0, then the eigenvector is set to be the jth coordinate 67*> vector. The normalization test is: 68*> 69*> RESULT(2) = max | M(v(j)) - 1 | / ( n ulp ) 70*> eigenvectors v(j) 71*> \endverbatim 72* 73* Arguments: 74* ========== 75* 76*> \param[in] LEFT 77*> \verbatim 78*> LEFT is LOGICAL 79*> =.TRUE.: The eigenvectors in the columns of E are assumed 80*> to be *left* eigenvectors. 81*> =.FALSE.: The eigenvectors in the columns of E are assumed 82*> to be *right* eigenvectors. 83*> \endverbatim 84*> 85*> \param[in] N 86*> \verbatim 87*> N is INTEGER 88*> The size of the matrices. If it is zero, SGET52 does 89*> nothing. It must be at least zero. 90*> \endverbatim 91*> 92*> \param[in] A 93*> \verbatim 94*> A is REAL array, dimension (LDA, N) 95*> The matrix A. 96*> \endverbatim 97*> 98*> \param[in] LDA 99*> \verbatim 100*> LDA is INTEGER 101*> The leading dimension of A. It must be at least 1 102*> and at least N. 103*> \endverbatim 104*> 105*> \param[in] B 106*> \verbatim 107*> B is REAL array, dimension (LDB, N) 108*> The matrix B. 109*> \endverbatim 110*> 111*> \param[in] LDB 112*> \verbatim 113*> LDB is INTEGER 114*> The leading dimension of B. It must be at least 1 115*> and at least N. 116*> \endverbatim 117*> 118*> \param[in] E 119*> \verbatim 120*> E is REAL array, dimension (LDE, N) 121*> The matrix of eigenvectors. It must be O( 1 ). Complex 122*> eigenvalues and eigenvectors always come in pairs, the 123*> eigenvalue and its conjugate being stored in adjacent 124*> elements of ALPHAR, ALPHAI, and BETA. Thus, if a(j)/b(j) 125*> and a(j+1)/b(j+1) are a complex conjugate pair of 126*> generalized eigenvalues, then E(,j) contains the real part 127*> of the eigenvector and E(,j+1) contains the imaginary part. 128*> Note that whether E(,j) is a real eigenvector or part of a 129*> complex one is specified by whether ALPHAI(j) is zero or not. 130*> \endverbatim 131*> 132*> \param[in] LDE 133*> \verbatim 134*> LDE is INTEGER 135*> The leading dimension of E. It must be at least 1 and at 136*> least N. 137*> \endverbatim 138*> 139*> \param[in] ALPHAR 140*> \verbatim 141*> ALPHAR is REAL array, dimension (N) 142*> The real parts of the values a(j) as described above, which, 143*> along with b(j), define the generalized eigenvalues. 144*> Complex eigenvalues always come in complex conjugate pairs 145*> a(j)/b(j) and a(j+1)/b(j+1), which are stored in adjacent 146*> elements in ALPHAR, ALPHAI, and BETA. Thus, if the j-th 147*> and (j+1)-st eigenvalues form a pair, ALPHAR(j+1)/BETA(j+1) 148*> is assumed to be equal to ALPHAR(j)/BETA(j). 149*> \endverbatim 150*> 151*> \param[in] ALPHAI 152*> \verbatim 153*> ALPHAI is REAL array, dimension (N) 154*> The imaginary parts of the values a(j) as described above, 155*> which, along with b(j), define the generalized eigenvalues. 156*> If ALPHAI(j)=0, then the eigenvalue is real, otherwise it 157*> is part of a complex conjugate pair. Complex eigenvalues 158*> always come in complex conjugate pairs a(j)/b(j) and 159*> a(j+1)/b(j+1), which are stored in adjacent elements in 160*> ALPHAR, ALPHAI, and BETA. Thus, if the j-th and (j+1)-st 161*> eigenvalues form a pair, ALPHAI(j+1)/BETA(j+1) is assumed to 162*> be equal to -ALPHAI(j)/BETA(j). Also, nonzero values in 163*> ALPHAI are assumed to always come in adjacent pairs. 164*> \endverbatim 165*> 166*> \param[in] BETA 167*> \verbatim 168*> BETA is REAL array, dimension (N) 169*> The values b(j) as described above, which, along with a(j), 170*> define the generalized eigenvalues. 171*> \endverbatim 172*> 173*> \param[out] WORK 174*> \verbatim 175*> WORK is REAL array, dimension (N**2+N) 176*> \endverbatim 177*> 178*> \param[out] RESULT 179*> \verbatim 180*> RESULT is REAL array, dimension (2) 181*> The values computed by the test described above. If A E or 182*> B E is likely to overflow, then RESULT(1:2) is set to 183*> 10 / ulp. 184*> \endverbatim 185* 186* Authors: 187* ======== 188* 189*> \author Univ. of Tennessee 190*> \author Univ. of California Berkeley 191*> \author Univ. of Colorado Denver 192*> \author NAG Ltd. 193* 194*> \date November 2011 195* 196*> \ingroup single_eig 197* 198* ===================================================================== 199 SUBROUTINE SGET52( LEFT, N, A, LDA, B, LDB, E, LDE, ALPHAR, 200 $ ALPHAI, BETA, WORK, RESULT ) 201* 202* -- LAPACK test routine (version 3.4.0) -- 203* -- LAPACK is a software package provided by Univ. of Tennessee, -- 204* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 205* November 2011 206* 207* .. Scalar Arguments .. 208 LOGICAL LEFT 209 INTEGER LDA, LDB, LDE, N 210* .. 211* .. Array Arguments .. 212 REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ), 213 $ B( LDB, * ), BETA( * ), E( LDE, * ), 214 $ RESULT( 2 ), WORK( * ) 215* .. 216* 217* ===================================================================== 218* 219* .. Parameters .. 220 REAL ZERO, ONE, TEN 221 PARAMETER ( ZERO = 0.0, ONE = 1.0, TEN = 10.0 ) 222* .. 223* .. Local Scalars .. 224 LOGICAL ILCPLX 225 CHARACTER NORMAB, TRANS 226 INTEGER J, JVEC 227 REAL ABMAX, ACOEF, ALFMAX, ANORM, BCOEFI, BCOEFR, 228 $ BETMAX, BNORM, ENORM, ENRMER, ERRNRM, SAFMAX, 229 $ SAFMIN, SALFI, SALFR, SBETA, SCALE, TEMP1, ULP 230* .. 231* .. External Functions .. 232 REAL SLAMCH, SLANGE 233 EXTERNAL SLAMCH, SLANGE 234* .. 235* .. External Subroutines .. 236 EXTERNAL SGEMV 237* .. 238* .. Intrinsic Functions .. 239 INTRINSIC ABS, MAX, REAL 240* .. 241* .. Executable Statements .. 242* 243 RESULT( 1 ) = ZERO 244 RESULT( 2 ) = ZERO 245 IF( N.LE.0 ) 246 $ RETURN 247* 248 SAFMIN = SLAMCH( 'Safe minimum' ) 249 SAFMAX = ONE / SAFMIN 250 ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' ) 251* 252 IF( LEFT ) THEN 253 TRANS = 'T' 254 NORMAB = 'I' 255 ELSE 256 TRANS = 'N' 257 NORMAB = 'O' 258 END IF 259* 260* Norm of A, B, and E: 261* 262 ANORM = MAX( SLANGE( NORMAB, N, N, A, LDA, WORK ), SAFMIN ) 263 BNORM = MAX( SLANGE( NORMAB, N, N, B, LDB, WORK ), SAFMIN ) 264 ENORM = MAX( SLANGE( 'O', N, N, E, LDE, WORK ), ULP ) 265 ALFMAX = SAFMAX / MAX( ONE, BNORM ) 266 BETMAX = SAFMAX / MAX( ONE, ANORM ) 267* 268* Compute error matrix. 269* Column i = ( b(i) A - a(i) B ) E(i) / max( |a(i) B| |b(i) A| ) 270* 271 ILCPLX = .FALSE. 272 DO 10 JVEC = 1, N 273 IF( ILCPLX ) THEN 274* 275* 2nd Eigenvalue/-vector of pair -- do nothing 276* 277 ILCPLX = .FALSE. 278 ELSE 279 SALFR = ALPHAR( JVEC ) 280 SALFI = ALPHAI( JVEC ) 281 SBETA = BETA( JVEC ) 282 IF( SALFI.EQ.ZERO ) THEN 283* 284* Real eigenvalue and -vector 285* 286 ABMAX = MAX( ABS( SALFR ), ABS( SBETA ) ) 287 IF( ABS( SALFR ).GT.ALFMAX .OR. ABS( SBETA ).GT. 288 $ BETMAX .OR. ABMAX.LT.ONE ) THEN 289 SCALE = ONE / MAX( ABMAX, SAFMIN ) 290 SALFR = SCALE*SALFR 291 SBETA = SCALE*SBETA 292 END IF 293 SCALE = ONE / MAX( ABS( SALFR )*BNORM, 294 $ ABS( SBETA )*ANORM, SAFMIN ) 295 ACOEF = SCALE*SBETA 296 BCOEFR = SCALE*SALFR 297 CALL SGEMV( TRANS, N, N, ACOEF, A, LDA, E( 1, JVEC ), 1, 298 $ ZERO, WORK( N*( JVEC-1 )+1 ), 1 ) 299 CALL SGEMV( TRANS, N, N, -BCOEFR, B, LDA, E( 1, JVEC ), 300 $ 1, ONE, WORK( N*( JVEC-1 )+1 ), 1 ) 301 ELSE 302* 303* Complex conjugate pair 304* 305 ILCPLX = .TRUE. 306 IF( JVEC.EQ.N ) THEN 307 RESULT( 1 ) = TEN / ULP 308 RETURN 309 END IF 310 ABMAX = MAX( ABS( SALFR )+ABS( SALFI ), ABS( SBETA ) ) 311 IF( ABS( SALFR )+ABS( SALFI ).GT.ALFMAX .OR. 312 $ ABS( SBETA ).GT.BETMAX .OR. ABMAX.LT.ONE ) THEN 313 SCALE = ONE / MAX( ABMAX, SAFMIN ) 314 SALFR = SCALE*SALFR 315 SALFI = SCALE*SALFI 316 SBETA = SCALE*SBETA 317 END IF 318 SCALE = ONE / MAX( ( ABS( SALFR )+ABS( SALFI ) )*BNORM, 319 $ ABS( SBETA )*ANORM, SAFMIN ) 320 ACOEF = SCALE*SBETA 321 BCOEFR = SCALE*SALFR 322 BCOEFI = SCALE*SALFI 323 IF( LEFT ) THEN 324 BCOEFI = -BCOEFI 325 END IF 326* 327 CALL SGEMV( TRANS, N, N, ACOEF, A, LDA, E( 1, JVEC ), 1, 328 $ ZERO, WORK( N*( JVEC-1 )+1 ), 1 ) 329 CALL SGEMV( TRANS, N, N, -BCOEFR, B, LDA, E( 1, JVEC ), 330 $ 1, ONE, WORK( N*( JVEC-1 )+1 ), 1 ) 331 CALL SGEMV( TRANS, N, N, BCOEFI, B, LDA, E( 1, JVEC+1 ), 332 $ 1, ONE, WORK( N*( JVEC-1 )+1 ), 1 ) 333* 334 CALL SGEMV( TRANS, N, N, ACOEF, A, LDA, E( 1, JVEC+1 ), 335 $ 1, ZERO, WORK( N*JVEC+1 ), 1 ) 336 CALL SGEMV( TRANS, N, N, -BCOEFI, B, LDA, E( 1, JVEC ), 337 $ 1, ONE, WORK( N*JVEC+1 ), 1 ) 338 CALL SGEMV( TRANS, N, N, -BCOEFR, B, LDA, E( 1, JVEC+1 ), 339 $ 1, ONE, WORK( N*JVEC+1 ), 1 ) 340 END IF 341 END IF 342 10 CONTINUE 343* 344 ERRNRM = SLANGE( 'One', N, N, WORK, N, WORK( N**2+1 ) ) / ENORM 345* 346* Compute RESULT(1) 347* 348 RESULT( 1 ) = ERRNRM / ULP 349* 350* Normalization of E: 351* 352 ENRMER = ZERO 353 ILCPLX = .FALSE. 354 DO 40 JVEC = 1, N 355 IF( ILCPLX ) THEN 356 ILCPLX = .FALSE. 357 ELSE 358 TEMP1 = ZERO 359 IF( ALPHAI( JVEC ).EQ.ZERO ) THEN 360 DO 20 J = 1, N 361 TEMP1 = MAX( TEMP1, ABS( E( J, JVEC ) ) ) 362 20 CONTINUE 363 ENRMER = MAX( ENRMER, TEMP1-ONE ) 364 ELSE 365 ILCPLX = .TRUE. 366 DO 30 J = 1, N 367 TEMP1 = MAX( TEMP1, ABS( E( J, JVEC ) )+ 368 $ ABS( E( J, JVEC+1 ) ) ) 369 30 CONTINUE 370 ENRMER = MAX( ENRMER, TEMP1-ONE ) 371 END IF 372 END IF 373 40 CONTINUE 374* 375* Compute RESULT(2) : the normalization error in E. 376* 377 RESULT( 2 ) = ENRMER / ( REAL( N )*ULP ) 378* 379 RETURN 380* 381* End of SGET52 382* 383 END 384