1;;; -*-  Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;     The data in this file contains enhancments.                    ;;;;;
4;;;                                                                    ;;;;;
5;;;  Copyright (c) 1984,1987 by William Schelter,University of Texas   ;;;;;
6;;;     All rights reserved                                            ;;;;;
7;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
8;;;     (c) Copyright 1982 Massachusetts Institute of Technology         ;;;
9;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
10
11(in-package :maxima)
12
13(macsyma-module risch)
14
15(load-macsyma-macros rzmac ratmac)
16
17(declare-top (special parnumer pardenom logptdx wholepart
18                      $ratalgdenom expexpflag $logsimp switch1 degree cary
19                      $ratfac $logexpand ratform genvar *var var rootfactor
20                      expint $keepfloat trigint operator $exponentialize $gcd
21                      $logarc changevp klth r s beta gamma b mainvar expflag
22                      expstuff liflag intvar switch varlist nogood genvar
23                      $erfflag $liflag rischp $factorflag alphar m
24                      genpairs hypertrigint *mosesflag *exp y $algebraic
25                      implicit-real $%e_to_numlog generate-atan2
26                      context rp-polylogp *in-risch-p*))
27
28(defmvar $liflag t "Controls whether `risch' generates polylogs")
29
30(defmvar $erfflag t "Controls whether `risch' generates `erfs'")
31
32(defvar changevp t "When nil prevents changevar hack")
33
34(defmacro pair (al bl) `(mapcar #'cons ,al ,bl))
35
36;; internal representation of risch expressions: list with canonical rational
37;; expression (CRE) as first element, standard maxima expressions as remaining
38;; elements.  risch expression is sum of CRE and remaining elements.
39(defmacro rischzero () ''((0 . 1) 0))
40
41(defun rischnoun (exp1 &optional (exp2 exp1 exp2p))
42  (unless exp2p (setq exp1 (rzero)))
43  `(,exp1 ((%integrate) ,(disrep exp2) ,intvar)))
44
45(defun getrischvar ()
46  (do ((vl varlist (cdr vl))
47       (gl genvar (cdr gl)))
48      ((null (cdr vl)) (car gl))))
49
50;; test whether CRE p is constant with respect to variable of integration.
51;; requires variables in varlist and genvar
52;; to be ordered as by intsetup, with var of integration ordered before
53;; any other expressions that contain it.
54(defun risch-pconstp (p)
55  (or (pcoefp p) (pointergp mainvar (car p))))
56
57(defun risch-constp (r)
58  (setq r (ratfix r))
59  (and (risch-pconstp (car r)) (risch-pconstp (cdr r))))
60
61;; adds two risch expressions (defined above).
62(defun rischadd (x y)
63  (destructuring-let (((a . b) x) ((c . d) y))
64    (cons (r+ a c) (append b d))))
65
66(defmfun $risch (exp var)
67  (let ((*integrator-level* 0))
68    (declare (special *integrator-level*))
69    (with-new-context (context)
70      (rischint exp var))))
71
72(defun spderivative (p var)
73  (cond ((pcoefp p) '(0 . 1))
74	((null (cdr p)) '(0 . 1))
75	((or (not (atom (car p))) (numberp (car p))) ;P IS A RATFORM
76	 (let ((denprime (spderivative (cdr p) var)))
77	   (cond ((rzerop denprime)
78		  (ratqu (spderivative (car p) var) (cdr p)))
79		 (t (ratqu (r- (r* (spderivative (car p) var)
80				   (cdr p))
81			       (r* (car p) denprime))
82			   (r* (cdr p) (cdr p)))))))
83	(t (r+ (spderivative1 (car p)
84			      (cadr p)
85			      (caddr p)
86			      var)
87	       (spderivative (cons (car p) (cdddr p))
88			     var)))))
89
90(defun spderivative1 (var1 deg coeff var)
91  (cond ((eq var1 var)
92	 (r* (ratexpt (cons (list var 1 1) 1) (1- deg))
93	     (pctimes deg coeff)))
94	((pointergp var var1) '(0 . 1))
95	((equal deg 0) (spderivative coeff var))
96	(t (r+ (r* (ratexpt (cons (list var1 1 1) 1) deg)
97		   (spderivative coeff var))
98	       (r* (cond ((equal deg 1) coeff)
99			 (t (r* deg
100				coeff
101				(ratexpt (cons (list var1 1 1) 1)
102					 (1- deg)))))
103		   (get var1 'rischdiff) )))))
104
105(defun polylogp (exp &optional sub)
106  (and (mqapplyp exp) (eq (subfunname exp) '$li)
107       (or (null sub) (equal sub (car (subfunsubs exp))))))
108
109(defun rischint (exp intvar &aux ($logarc nil) ($exponentialize nil)
110                     ($gcd '$algebraic) ($algebraic t) (implicit-real t)
111                     ($float nil) ($numer nil)
112                     ;; The risch integrator expects $logexpand T. Otherwise,
113                     ;; the integrator hangs for special types of integrals
114                     ;; (See bug report ID:3039452)
115                     ($logexpand t))
116  (prog ($%e_to_numlog $logsimp trigint operator y z var ratform liflag
117	 mainvar varlist genvar hypertrigint $ratfac $ratalgdenom )
118     (if (specrepp exp) (setq exp (specdisrep exp)))
119     (if (specrepp intvar) (setq intvar (specdisrep intvar)))
120     (if (mnump intvar)
121	 (merror (intl:gettext "risch: attempt to integrate wrt a number: ~:M") intvar))
122     (if (and (atom intvar) (isinop exp intvar)) (go noun))
123     (rischform exp)
124     (cond (trigint (return (trigin1 exp intvar)))
125	   (hypertrigint (return (hypertrigint1 exp intvar t)))
126	   (operator (go noun)))
127     (setq y (intsetup exp intvar))
128     (if operator (go noun))
129     (setq ratform (car y))
130     (setq varlist (caddr ratform))
131     (setq mainvar (caadr (ratf intvar)))
132     (setq genvar (cadddr ratform))
133     (unless (some #'algpget varlist)
134       (setq $algebraic nil)
135       (setq $gcd (car *gcdl*)))
136     (setq var (getrischvar))
137     (setq z (tryrisch (cdr y) mainvar))
138     (setf (caddr ratform) varlist)
139     (setf (cadddr ratform) genvar)
140     (return (cond ((atom (cdr z)) (disrep (car z)))
141		   (t (let (($logsimp t) ($%e_to_numlog t))
142			(simplify (list* '(mplus)
143					 (disrep (car z))
144					 (cdr z)))))))
145     noun (return (list '(%integrate) exp intvar))))
146
147(defun rischform (l)
148  (cond ((or (atom l) (alike1 intvar l) (freeof intvar l)) nil)
149	((polylogp l)
150	 (if (and (integerp (car (subfunsubs l)))
151		  (signp g (car (subfunsubs l))))
152	     (rischform (car (subfunargs l)))
153	     (setq operator t)))
154	((atom (caar l))
155	 (case (caar l)
156	   ((%sin %cos %tan %cot %sec %csc)
157	    (setq trigint t $exponentialize t)
158	    (rischform (cadr l)))
159	   ((%asin %acos %atan %acot %asec %acsc)
160	    (setq trigint t $logarc t)
161	    (rischform (cadr l)))
162	   ((%sinh %cosh %tanh %coth %sech %csch)
163	    (setq hypertrigint t $exponentialize t)
164	    (rischform (cadr l)))
165	   ((%asinh %acosh %atanh %acoth %asech %acsch)
166	    (setq hypertrigint t $logarc t)
167	    (rischform (cadr l)))
168	   ((mtimes mplus mexpt rat %erf %log)
169	    (mapc #'rischform (cdr l)))
170	   (t (setq operator (caar l)))))
171	(t (setq operator (caar l)))))
172
173(defun hypertrigint1 (exp var hyperfunc)
174  (let ((result (if hyperfunc
175                    (sinint (resimplify exp) var)
176                    (rischint (resimplify exp) var))))
177    ;; The result can contain solveable integrals. Look for this case.
178    (if (isinop result '%integrate)
179        ;; Found an integral. Evaluate the result again.
180        ;; Set the flag *in-risch-p* to make sure that we do not call
181        ;; rischint again from the integrator. This avoids endless loops.
182        (let ((*in-risch-p* t))
183          (meval (list '($ev) result '$nouns)))
184        result)))
185
186(defun trigin1 (*exp var)
187  (let ((yyy (hypertrigint1 *exp var nil)))
188    (setq yyy (div ($expand ($num yyy))
189		   ($expand ($denom yyy))))
190    (let ((rischp var) (rp-polylogp t) $logarc $exponentialize result)
191      (setq result (sratsimp (if (and (freeof '$%i *exp) (freeof '$li yyy))
192                                 ($realpart yyy)
193                                 ($rectform yyy))))
194      ;; The result can contain solveable integrals. Look for this case.
195      (if (isinop result '%integrate)
196          ;; Found an integral. Evaluate the result again.
197          ;; Set the flag *in-risch-p* to make sure that we do not call
198          ;; rischint again from the integrator. This avoids endless loops.
199          (let ((*in-risch-p* t))
200            (meval (list '($ev) result '$nouns)))
201          result))))
202
203(defun tryrisch (exp mainvar)
204  (prog (wholepart rootfactor parnumer pardenom
205	 switch1 logptdx expflag expstuff expint y)
206     (setq expstuff '(0 . 1))
207     (cond ((eq mainvar var)
208	    (return (rischfprog exp)))
209	   ((eq (get var 'leadop)
210		'mexpt)
211	    (setq expflag t)))
212     (setq y (rischlogdprog exp))
213     (dolist (rat logptdx)
214       (setq y (rischadd (rischlogeprog rat) y)))
215     (if varlist (setq y (rischadd (tryrisch1 expstuff mainvar) y)))
216     (return (if expint (rischadd (rischexppoly expint var) y)
217		 y))))
218
219(defun tryrisch1 (exp mainvar)
220  (let* ((varlist (reverse (cdr (reverse varlist))))
221	 (var (getrischvar)))
222    (tryrisch exp mainvar)))
223
224(defun rischfprog (rat)
225  (let (rootfactor pardenom parnumer logptdx wholepart switch1)
226    (cons (cdr (ratrep* (dprog rat)))
227	  (let ((varlist varlist)
228		(genvar (subseq genvar 0 (length varlist))))
229	    (mapcar #'eprog logptdx)))))
230
231(defun rischlogdprog (ratarg)
232  (prog (klth arootf deriv thebpg thetop thebot prod1 prod2 ans)
233     (setq ans '(0 . 1))
234     (cond ((or (pcoefp (cdr ratarg))
235		(pointergp var (cadr ratarg)))
236	    (return (rischlogpoly ratarg))))
237     (aprog (ratdenominator ratarg))
238     (cprog (ratnumerator ratarg) (ratdenominator ratarg))
239     (do ((rootfactor (reverse rootfactor) (cdr rootfactor))
240	  (parnumer (reverse parnumer) (cdr parnumer))
241	  (klth (length rootfactor) (1- klth)))
242	 ((= klth 1))
243       (setq arootf (car rootfactor))
244       (cond
245	 ((pcoefp arootf))
246	 ((and (eq (get (car arootf) 'leadop) 'mexpt)
247	       (null (cdddr arootf)))
248	  (setq
249	   expint
250	   (append
251	    (cond ((and (not (atom (car parnumer)))
252			(not (atom (caar parnumer)))
253			(eq (caaar parnumer) (car arootf)))
254		   (gennegs arootf (cdaar parnumer) (cdar parnumer)))
255		  (t (list
256		      (list 'neg (car parnumer)
257			    (car arootf) klth (cadr arootf)))))
258	    expint)))
259	 ((not (zerop (pdegree arootf var)))
260	  (setq deriv (spderivative arootf mainvar))
261	  (setq thebpg (bprog arootf (ratnumerator deriv)))
262	  (setq thetop (car parnumer))
263	  (do ((kx (1- klth) (1- kx))) ((= kx 0))
264	    (setq prod1 (r* thetop (car thebpg)))
265	    (setq prod2 (r* thetop (cdr thebpg) (ratdenominator deriv)))
266	    (setq thebot (pexpt arootf kx))
267	    (setq ans (r+ ans (ratqu (r- prod2) (r* kx thebot))))
268	    (setq thetop
269		  (r+ prod1 (ratqu (spderivative prod2 mainvar) kx)))
270	    (setq thetop (cdr (ratdivide thetop thebot))))
271	  (push (ratqu thetop arootf) logptdx))))
272     (push (ratqu (car parnumer) (car rootfactor)) logptdx)
273     (cond ((or (pzerop ans) (pzerop (car ans)))
274	    (return (rischlogpoly wholepart))))
275     (setq thetop (cadr (pdivide (ratnumerator ans)
276				 (ratdenominator ans))))
277     (return (rischadd (ncons (ratqu thetop (ratdenominator ans)))
278		       (rischlogpoly wholepart)))))
279
280(defun gennegs (denom num numdenom)
281  (cond ((null num) nil)
282	(t (cons (list 'neg (cadr num)
283		       (car denom)
284		       (- klth (car num))
285		       (r* numdenom (caddr denom) ))
286		 (gennegs denom (cddr num) numdenom)))))
287
288(defun rischlogeprog (p)
289  (prog (p1e p2e p2deriv logcoef ncc dcc allcc expcoef my-divisor)
290     (if (or (pzerop p) (pzerop (car p))) (return (rischzero)))
291     (setq p1e (ratnumerator p))
292     (desetq (dcc p2e) (oldcontent (ratdenominator p)))
293     (cond ((and (not switch1)
294		 (cdr (setq pardenom (intfactor p2e))))
295	    (setq parnumer nil)
296	    (setq switch1 t)
297	    (desetq (ncc p1e) (oldcontent p1e))
298	    (cprog p1e p2e)
299	    (setq allcc (ratqu ncc dcc))
300	    (return (do ((pnum parnumer (cdr pnum))
301			 (pden pardenom (cdr pden))
302			 (ans (rischzero)))
303			((or (null pnum) (null pden))
304			 (setq switch1 nil) ans)
305		      (setq ans (rischadd
306				 (rischlogeprog
307				  (r* allcc (ratqu (car pnum) (car pden))))
308				 ans))))))
309     (when (and expflag (null (p-red p2e)))
310       (push (cons 'neg p) expint)
311       (return (rischzero)))
312     (if expflag (setq expcoef (r* (p-le p2e) (ratqu (get var 'rischdiff)
313						     (make-poly var)))))
314     (setq p1e (ratqu p1e (ptimes dcc (p-lc p2e)))
315	   p2e (ratqu p2e (p-lc p2e)))	;MAKE DENOM MONIC
316     (setq p2deriv (spderivative p2e mainvar))
317     (setq my-divisor (if expflag (r- p2deriv (r* p2e expcoef)) p2deriv))
318     (when (equal my-divisor '(0 . 1))
319       ;; (format t "HEY RISCHLOGEPROG, FOUND ZERO DIVISOR; GIVE UP.~%")
320       (return (rischnoun p)))
321     (setq logcoef (ratqu p1e my-divisor))
322     (when (risch-constp logcoef)
323       (if expflag
324	   (setq expstuff (r- expstuff (r* expcoef logcoef))))
325       (return
326	 (list
327	  '(0 . 1)
328	  (list '(mtimes)
329		(disrep logcoef)
330		(logmabs (disrep p2e))))))
331     (if (and expflag $liflag changevp)
332	 (let* ((newvar (gensym))
333		(new-int ($changevar
334			  `((%integrate) ,(simplify (disrep p)) ,intvar)
335			  (sub newvar (get var 'rischexpr))
336			  newvar intvar))
337		(changevp nil))		;prevents recursive changevar
338	   (if (and (freeof intvar new-int)
339		    (freeof '%integrate
340			    (setq new-int (rischint (sdiff new-int newvar)
341						    newvar))))
342	       (return
343		 (list (rzero)
344		       (maxima-substitute (get var 'rischexpr) newvar new-int))))))
345     (return (rischnoun p))))
346
347
348(defun findint (exp)
349  (cond ((atom exp) nil)
350	((atom (car exp)) (findint (cdr exp)))
351	((eq (caaar exp) '%integrate) t)
352	(t (findint (cdr exp)))))
353
354(defun logequiv (fn1 fn2)
355  (freeof intvar ($ratsimp (div* (remabs (leadarg fn1))
356				 (remabs (leadarg fn2))))))
357
358(defun remabs (exp)
359  (cond ((atom exp) exp)
360	((eq (caar exp) 'mabs) (cadr exp))
361	(t exp)))
362
363(declare-top (special vlist lians degree))
364
365(defun getfnsplit (l)
366  (let (coef fn)
367    (dolist (x l (values (muln coef nil) (muln fn nil)))
368      (if (free x intvar)
369          (push x coef)
370          (push x fn)))))
371
372(defun getfncoeff (a form)
373  (cond ((null a) 0)
374	((equal (car a) 0) (getfncoeff (cdr a) form))
375	((and (listp (car a))
376	      (eq (caaar a) 'mplus) (ratpl (getfncoeff (cdar a) form)
377					   (getfncoeff (cdr a) form))))
378	((and (listp (car a))
379	      (eq (caaar a) 'mtimes))
380	 (multiple-value-bind (coef newfn)
381             (getfnsplit (cdar a))
382           ;; (car a) is a mtimes expression. We insert coef and newfn as the
383           ;; new arguments to the mtimes expression. This causes problems if
384           ;;   (1) coef is a mtimes expression too and
385           ;;   (2) (car a) has already a simp flag
386           ;; We get a nested mtimes expression, which does not simplify.
387	   ;; We comment out the following code (DK 09/2009):
388           ;; (setf (cdar a) (list coef newfn))
389
390	   ;; Insert a complete mtimes expression without simpflag.
391           ;; Nested mtimes expressions simplify further.
392           (setf (car a) (list '(mtimes) coef newfn))
393
394	   (setf (cdar a) (list coef newfn))
395	   (cond ((zerop1 coef) (getfncoeff (cdr a) form))
396		 ((and (matanp newfn) (member '$%i varlist :test #'eq))
397		  (let (($logarc t) ($logexpand '$all))
398		    (rplaca a ($expand (resimplify (car a)))))
399		  (getfncoeff a form))
400		 ((and (alike1 (leadop newfn) (leadop form))
401                     (or (alike1 (leadarg newfn) (leadarg form))
402                        (and (mlogp newfn)
403                           (logequiv form newfn))))
404		  (ratpl (rform coef)
405			 (prog2 (rplaca a 0)
406			     (getfncoeff (cdr a) form))))
407		 ((do ((vl varlist (cdr vl))) ((null vl))
408		    (and (not (atom (car vl)))
409                       (alike1 (leadop (car vl)) (leadop newfn))
410                       (if (mlogp newfn)
411                           (logequiv (car vl) newfn)
412                           (alike1 (car vl) newfn))
413                       (rplaca (cddar a) (car vl))
414                       (return nil))))
415		 ((let (vlist) (newvar1 (car a)) (null vlist))
416		  (setq cary
417			(ratpl (cdr (ratrep* (car a)))
418			       cary))
419		  (rplaca a 0)
420		  (getfncoeff (cdr a) form))
421		 ((and liflag
422                     (mlogp form)
423                     (mlogp newfn))
424		  (push (dilog (cons (car a) form)) lians)
425		  (rplaca a 0)
426		  (getfncoeff (cdr a) form))
427		 ((and liflag
428                     (polylogp form)
429                     (mlogp newfn)
430                     (logequiv form newfn))
431		  (push (mul* (cadar a) (make-li (1+ (car (subfunsubs form)))
432						 (leadarg form)))
433			lians)
434		  (rplaca a 0)
435		  (getfncoeff (cdr a) form))
436		 (t (setq nogood t) 0))))
437	(t (rplaca a (list '(mtimes) 1 (car a)))
438	   (getfncoeff a form))))
439
440
441(defun rischlogpoly (exp)
442  (cond ((equal exp '(0 . 1)) (rischzero))
443	(expflag (push (cons 'poly exp) expint)
444		 (rischzero))
445	((not (among var exp)) (tryrisch1 exp mainvar))
446	(t (do ((degree (pdegree (car exp) var) (1- degree))
447		(p (car exp))
448		(den (cdr exp))
449		(lians ())
450		(sum (rzero))
451		(cary (rzero))
452		(y) (z) (ak) (nogood) (lbkpl1))
453	       ((minusp degree) (cons sum (append lians (cdr y))))
454	     (setq ak (r- (ratqu (polcoef p degree) den)
455			  (r* (cons (1+ degree) 1)
456			      cary
457			      (get var 'rischdiff))))
458	     (if (not (pzerop (polcoef p degree)))
459		 (setq p (if (pcoefp p) (pzero) (psimp var (p-red p)))))
460	     (setq y (tryrisch1 ak mainvar))
461	     (setq cary (car y))
462	     (and (> degree 0) (setq liflag $liflag))
463	     (setq z (getfncoeff (cdr y) (get var 'rischexpr)))
464	     (setq liflag nil)
465	     (cond ((and (> degree 0)
466			 (or nogood (findint (cdr y))))
467		    (return (rischnoun sum (r+ (r* ak
468						   (make-poly var degree 1))
469					       (ratqu p den))))))
470	     (setq lbkpl1 (ratqu z (cons (1+ degree) 1)))
471	     (setq sum (r+ (r* lbkpl1 (make-poly var (1+ degree) 1))
472			   (r* cary (if (zerop degree) 1
473					(make-poly var degree 1)))
474			   sum))))))
475
476(defun make-li (sub arg)
477  (subfunmake '$li (ncons sub) (ncons arg)))
478
479;;integrates log(ro)^degree*log(rn)' in terms of polylogs
480;;finds constants c,d and integers j,k such that
481;;c*ro^j+d=rn^k  If ro and rn are poly's then can assume either j=1 or k=1
482(defun dilog (l)
483  (destructuring-let* ((((nil coef nlog) . olog) l)
484		       (narg (remabs (cadr nlog)))
485		       (varlist varlist)
486		       (genvar genvar)
487		       (rn (rform narg))	;; can add new vars to varlist
488		       (ro (rform (cadr olog)))
489		       (var (caar ro))
490		       ((j . k) (ratreduce (pdegree (car rn) var) (pdegree (car ro) var)))
491		       (idx (gensym))
492		       (rc) (rd))
493    (cond ((and (= j 1) (> k 1))
494	   (setq rn (ratexpt rn k)
495		 coef (div coef k)
496		 narg (rdis rn)))
497	  ((and (= k 1) (> j 1))
498	   (setq ro (ratexpt ro j)
499		 coef (div coef (f* j degree))
500		 olog (mul j olog))))
501    (desetq (rc . rd) (ratdivide rn ro))
502    (cond ((and (freeof intvar (rdis rc))	;; can't use risch-constp because varlist
503		(freeof intvar (rdis rd)))	;; is not set up with vars in correct order.
504	   (setq narg ($ratsimp (sub 1 (div narg (rdis rd)))))
505	   (mul* coef (power -1 (1+ degree))
506		 `((mfactorial) ,degree)
507		 (dosum (mul* (power -1 idx)
508			      (div* (power olog idx)
509				    `((mfactorial) ,idx))
510			      (make-li (add degree (neg idx) 1) narg))
511			idx 0 degree t)))
512	  (t (setq nogood t) 0))))
513
514(defun exppolycontrol (flag f a expg n)
515  (let (y l var (varlist varlist) (genvar genvar))
516    (setq varlist (reverse (cdr (reverse varlist))))
517    (setq var (getrischvar))
518    (setq y (get var 'leadop))
519    (cond ((and (not (pzerop (ratnumerator f)))
520		(risch-constp (setq l (ratqu a f))))
521	   (cond (flag		;; multiply in expg^n - n may be negative
522		  (list (r* l (ratexpt (cons (list expg 1 1) 1) n))
523			0))
524		 (t l)))
525	  ((eq y intvar)
526	   (rischexpvar nil flag (list f a expg n)))
527	  (t (rischexplog (eq y 'mexpt) flag f a
528			  (list expg n (get var 'rischarg)
529				var (get var 'rischdiff)))))))
530
531(defun rischexppoly (expint var)
532  (let (y w num denom type (ans (rischzero))
533	  (expdiff (ratqu (get var 'rischdiff) (list var 1 1))))
534    (do ((expint expint (cdr expint)))
535	((null expint) ans)
536      (desetq (type . y) (car expint))
537      (desetq (num . denom) (ratfix y))
538      (cond ((eq type 'neg)
539	     (setq w (exppolycontrol t
540				     (r* (- (cadr denom))
541					 expdiff)
542				     (ratqu num (caddr denom))
543				     var
544				     (- (cadr denom)))))
545	    ((or (numberp num) (not (eq (car num) var)))
546	     (setq w (tryrisch1 y mainvar)))
547	    (t (setq w (rischzero))
548	       (do ((num (cdr num) (cddr num))) ((null num))
549		 (cond ((equal (car num) 0)
550			(setq w (rischadd
551				 (tryrisch1 (ratqu (cadr num) denom) mainvar)
552				 w)))
553		       (t (setq w (rischadd (exppolycontrol
554					     t
555					     (r* (car num) expdiff)
556					     (ratqu (cadr num) denom)
557					     var
558					     (car num))
559					    w)))))))
560      (setq ans (rischadd w ans)))))
561
562(defun rischexpvar (expexpflag flag l)
563  (prog (lcm y m p alphar beta gamma delta r s
564	 tt denom k wl wv i ytemp ttemp yalpha f a expg n yn yd)
565     (desetq (f a expg n) l)
566     (cond ((or (pzerop a) (pzerop (car a)))
567	    (return (cond ((null flag) (rzero))
568			  (t (rischzero))))))
569     (setq denom (ratdenominator f))
570     (setq p (findpr (cdr (partfrac a mainvar))
571		     (cdr (partfrac f mainvar))))
572     (setq lcm (plcm (ratdenominator a) p))
573     (setq y (ratpl (spderivative (cons 1 p) mainvar)
574		    (ratqu f p)))
575     (setq lcm (plcm lcm (ratdenominator y)))
576     (setq r (car (ratqu lcm p)))
577     (setq s (car (r* lcm y)))
578     (setq tt (car (r* a lcm)))
579     (setq beta (pdegree r mainvar))
580     (setq gamma (pdegree s mainvar))
581     (setq delta (pdegree tt mainvar))
582     (setq alphar (max (- (1+ delta) beta)
583		       (- delta gamma)))
584     (setq m 0)
585     (cond ((equal (1- beta) gamma)
586	    (setq y (r* -1
587			(ratqu (polcoef s gamma)
588			       (polcoef r beta))))
589	    (and (equal (cdr y) 1)
590		 (numberp (car y))
591		 (setq m (car y)))))
592     (setq alphar (max alphar m))
593     (if (minusp alphar)
594	 (return (if flag (cxerfarg (rzero) expg n a) nil)))
595     (cond ((not (and (equal alphar m) (not (zerop m))))
596	    (go down2)))
597     (setq k (+ alphar beta -2))
598     (setq wl nil)
599     l2   (setq wv (list (cons (polcoef tt k) 1)))
600     (setq i alphar)
601     l1   (setq wv
602		(cons (r+ (r* (cons i 1)
603			      (polcoef r (+ k 1 (- i))))
604			  (cons (polcoef s (+ k (- i))) 1))
605		      wv))
606     (decf i)
607     (cond ((> i -1) (go l1)))
608     (setq wl (cons wv wl))
609     (decf k)
610     (cond ((> k -1) (go l2)))
611     (setq y (lsa wl))
612     (if (or (eq y 'singular) (eq y 'inconsistent))
613	 (cond ((null flag) (return nil))
614	       (t (return (cxerfarg (rzero) expg n a)))))
615     (setq k 0)
616     (setq lcm 0)
617     (setq y (cdr y))
618     l3   (setq lcm
619		(r+ (r* (car y) (pexpt (list mainvar 1 1) k))
620		    lcm))
621     (incf k)
622     (setq y (cdr y))
623     (cond ((null y)
624	    (return (cond ((null flag) (ratqu lcm p))
625			  (t (list (r* (ratqu lcm p)
626				       (cons (list expg n 1) 1))
627				   0))))))
628     (go l3)
629     down2 (cond ((> (1- beta) gamma)
630		 (setq k (+ alphar (1- beta)))
631		 (setq denom '(ratti alphar (polcoef r beta) t)))
632		((< (1- beta) gamma)
633		 (setq k (+ alphar gamma))
634		 (setq denom '(polcoef s gamma)))
635		(t (setq k (+ alphar gamma))
636		   (setq denom
637			 '(ratpl (ratti alphar (polcoef r beta) t)
638			   (polcoef s gamma)))))
639     (setq y 0)
640     loop (setq yn (polcoef (ratnumerator tt) k)
641		yd (r* (ratdenominator tt) ;DENOM MAY BE 0
642		       (cond ((zerop alphar) (polcoef s gamma))
643			     (t (eval denom))) ))
644     (cond ((rzerop yd)
645	    (cond ((pzerop yn) (setq k (1- k) alphar (1- alphar))
646		   (go loop))		;need more constraints?
647		  (t (cond
648		       ((null flag) (return nil))
649		       (t (return (cxerfarg (rzero) expg n a)))))))
650	   (t (setq yalpha (ratqu yn yd))))
651     (setq ytemp (r+ y (r* yalpha
652			   (cons (list mainvar alphar 1) 1) )))
653     (setq ttemp (r- tt (r* yalpha
654			    (r+ (r* s (cons (list mainvar alphar 1) 1))
655				(r* r alphar
656				    (list mainvar (1- alphar) 1))))))
657     (decf k)
658     (decf alphar)
659     (cond ((< alphar 0)
660	    (cond
661	      ((rzerop ttemp)
662	       (cond
663		 ((null flag) (return (ratqu ytemp p)))
664		 (t (return (list (ratqu (r* ytemp (cons (list expg n 1) 1))
665					 p)
666				  0)))))
667	      ((null flag) (return nil))
668	      ((and (risch-constp (setq ttemp (ratqu ttemp lcm)))
669		    $erfflag
670		    (equal (pdegree (car (get expg 'rischarg)) mainvar) 2)
671		    (equal (pdegree (cdr (get expg 'rischarg)) mainvar) 0))
672	       (return (list (ratqu (r* ytemp (cons (list expg n 1) 1)) p)
673			     (erfarg2 (r* n (get expg 'rischarg)) ttemp))))
674	      (t (return
675		   (cxerfarg
676		    (ratqu (r* y (cons (list expg n 1) 1)) p)
677		    expg
678		    n
679		    (ratqu tt lcm)))))))
680     (setq y ytemp)
681     (setq tt ttemp)
682     (go loop)))
683
684
685;; *JM should be declared as an array, although it is not created
686;; by this file. -- cwh
687
688(defun lsa (mm)
689  (prog (d *mosesflag m m2)
690     (setq d (length (car mm)))
691     ;; MTOA stands for MATRIX-TO-ARRAY.  An array is created and
692     ;; associated functionally with the symbol *JM.  The elements
693     ;; of the array are initialized from the matrix MM.
694     (mtoa '*jm* (length mm) d mm)
695     (setq m (tfgeli '*jm*  (length mm) d))
696     (cond ((or (and (null (car m)) (null (cadr m)))
697		(and (car m)
698		     (> (length (car m)) (- (length mm) (1- d)))))
699	    (return 'singular))
700	   ((cadr m) (return 'inconsistent)))
701     (setq *mosesflag t)
702     (ptorat '*jm* (1- d) d)
703     (setq m2 (xrutout '*jm* (1- d) d nil nil))
704     (setq m2 (lsafix (cdr m2) (caddr m)))
705     (return m2)))
706
707(defun lsafix (l n)
708  (declare (special *jm*))
709  (do ((n n (cdr n))
710       (l l (cdr l)))
711      ((null l))
712    (setf (aref *jm* 1 (car n)) (car l)))
713  (do ((s (length l) (1- s))
714       (ans))
715      ((= s 0) (cons '(list) ans))
716    (setq ans (cons (aref *jm* 1 s) ans))))
717
718
719(defun findpr (alist flist &aux (p 1) alphar fterm)
720  (do ((alist alist (cdr alist))) ((null alist))
721    (setq fterm (findflist (cadar alist) flist))
722    (if fterm (setq flist (remove y flist :count 1 :test #'eq)))
723    (setq alphar
724	  (cond ((null fterm) (caddar alist))
725		((equal (caddr fterm) 1)
726		 (fpr-dif (car flist) (caddar alist)))
727		(t (max (- (caddar alist) (caddr fterm)) 0))))
728    (if (not (zerop alphar))
729	(setq p (ptimes p (pexpt (cadar alist) alphar)))))
730  (do ((flist flist (cdr flist)))
731      ((null flist))
732    (when (equal (caddar flist) 1)
733      (setq alphar (fpr-dif (car flist) 0))
734      (setq p (ptimes p (pexpt (cadar flist) alphar)))))
735  p)
736
737(defun fpr-dif (fterm alpha)
738  (destructuring-let* (((num den mult) fterm)
739		       (m (spderivative den mainvar))
740		       (n))
741    (cond ((rzerop m) alpha)
742	  (t (setq n (ratqu (cdr (ratdivide num den))
743			    m))
744	     (if (and (equal (cdr n) 1) (numberp (car n)))
745		 (max (car n) alpha)
746		 alpha)))))
747
748(defun findflist (a llist)
749  (cond ((null llist) nil)
750	((equal (cadar llist) a) (car llist))
751	(t (findflist a (cdr llist)))))
752
753
754(defun rischexplog (expexpflag flag f a l)
755  (declare (special var))
756  (prog (lcm y yy m p alphar beta gamma delta
757	 mu r s tt denom ymu rbeta expg n eta logeta logdiff
758	 temp cary nogood vector aarray rmu rrmu rarray)
759     (desetq (expg n eta logeta logdiff) l)
760     (cond ((or (pzerop a) (pzerop (car a)))
761	    (return (cond ((null flag) (rzero))
762			  (t (rischzero))))))
763     (setq p (findpr (cdr (partfrac a var)) (cdr (partfrac f var))))
764     (setq lcm (plcm (ratdenominator a) p))
765     (setq y (ratpl (spderivative (cons 1 p) mainvar)
766		    (ratqu f p)))
767     (setq lcm (plcm lcm (ratdenominator y)))
768     (setq r (car (ratqu lcm p)))
769     (setq s (car (r* lcm y)))
770     (setq tt (car (r* a lcm)))
771     (setq beta (pdegree r var))
772     (setq gamma (pdegree s var))
773     (setq delta (pdegree tt var))
774     (cond (expexpflag (setq mu (max (- delta beta)
775				     (- delta gamma)))
776		       (go expcase)))
777     (setq mu (max (- (1+ delta) beta)
778		   (- (1+ delta) gamma)))
779     (cond ((< beta gamma) (go back))
780	   ((= (1- beta) gamma) (go down1)))
781     (setq y (tryrisch1 (ratqu (r- (r* (polcoef r (1- beta))
782				       (polcoef s gamma))
783				   (r* (polcoef r beta)
784				       (polcoef s (1- gamma))))
785			       (r* (polcoef r beta)
786				   (polcoef r beta) ))
787			mainvar))
788     (setq cary (car y))
789     (setq yy (getfncoeff (cdr y) (get var 'rischexpr)))
790     (cond ((and (not (findint (cdr y)))
791		 (not nogood)
792		 (not (atom yy))
793		 (equal (cdr yy) 1)
794		 (numberp (car yy))
795		 (> (car yy) mu))
796	    (setq mu (car yy))))
797     (go back)
798     expcase
799     (cond ((not (equal beta gamma)) (go back)))
800     (setq y (tryrisch1 (ratqu (polcoef s gamma) (polcoef r beta))
801			mainvar))
802     (cond ((findint (cdr y)) (go back)))
803     (setq yy (ratqu (r* -1 (car y)) eta))
804     (cond ((and (equal (cdr yy) 1)
805		 (numberp (car yy))
806		 (> (car yy) mu))
807	    (setq mu (car yy))))
808     (go back)
809     down1(setq y (tryrisch1 (ratqu (polcoef s gamma) (polcoef r beta))
810			     mainvar))
811     (setq cary (car y))
812     (setq yy (getfncoeff (cdr y) (get var 'rischexpr)))
813     (cond ((and (not (findint (cdr y)))
814		 (not nogood)
815		 (equal (cdr yy) 1)
816		 (numberp (car yy))
817		 (> (- (car yy)) mu))
818	    (setq mu (- (car yy)))))
819     back (if (minusp mu)
820	      (return (if flag (cxerfarg (rzero) expg n a) nil)))
821     (cond ((> beta gamma)(go lsacall))
822	   ((= beta gamma)
823	    (go recurse)))
824     (setq denom (polcoef s gamma))
825     (setq y '(0 . 1))
826     linearloop
827     (setq ymu (ratqu (polcoef (ratnumerator tt) (+ mu gamma))
828		      (r* (ratdenominator tt) denom)))
829     (setq y (r+ y (setq ymu (r* ymu (pexpt (list logeta 1 1) mu) ))))
830     (setq tt (r- tt
831		  (r* s ymu)
832		  (r* r (spderivative ymu mainvar))))
833     (decf mu)
834     (cond  ((not (< mu 0)) (go linearloop))
835	    ((not flag) (return (if (rzerop tt) (ratqu y p) nil)))
836	    ((rzerop tt)
837	     (return (cons (ratqu (r* y (cons (list expg n 1) 1)) p) '(0))))
838	    (t (return (cxerfarg (ratqu (r* y (cons (list expg n 1) 1)) p)
839				 expg
840				 n
841				 (ratqu tt lcm)))))
842     recurse
843     (setq rbeta (polcoef r beta))
844     (setq y '(0 . 1))
845     recurseloop
846     (setq f (r+ (ratqu (polcoef s gamma) rbeta)
847		 (if expexpflag
848		     (r* mu (spderivative eta mainvar))
849		     0)))
850     (setq ymu (exppolycontrol nil
851			       f
852			       (ratqu (polcoef (ratnumerator tt)
853					       (+ beta mu))
854				      (r* (ratdenominator tt) rbeta))
855			       expg n))
856     (when (null ymu)
857       (return (cond ((null flag) nil)
858		     (t (return (cxerfarg (ratqu (r* y (cons (list expg n 1) 1)) p)
859					  expg n (ratqu tt lcm)))))))
860     (setq y (r+ y (setq ymu (r* ymu (pexpt (list logeta 1 1) mu)))))
861     (setq tt (r- tt
862		  (r* s ymu)
863		  (r* r (spderivative ymu mainvar))))
864     (decf mu)
865     (cond
866       ((not (< mu 0)) (go recurseloop))
867       ((not flag)
868	(return (cond ((rzerop tt) (ratqu y p)) (t nil))))
869       ((rzerop tt)
870	(return (cons (ratqu (r* y (cons (list expg n 1) 1)) p) '(0))))
871       (t (return (cxerfarg (ratqu (r* y (cons (list expg n 1) 1)) p)
872			    expg
873			    n
874			    (ratqu tt lcm)))))
875     lsacall
876     (setq rrmu mu)
877     muloop
878     (setq temp (r* (ratexpt (cons (list logeta 1 1) 1) (1- mu))
879		    (r+ (r* s (cons (list logeta 1 1) 1))
880			(r* mu r logdiff ))))
881     mu1  (setq vector nil)
882     (setq rmu (+ rrmu beta))
883     rmuloop
884     (setq vector (cons (ratqu (polcoef (ratnumerator temp) rmu)
885			       (ratdenominator temp)) vector))
886     (decf rmu)
887     (unless (< rmu 0) (go rmuloop))
888     (decf mu)
889     (setq aarray (append aarray (list (reverse vector))))
890     (cond ((not (< mu 0)) (go muloop))
891	   ((equal mu -2) (go skipmu)))
892     (setq temp tt)
893     (go mu1)
894     skipmu
895     (setq rarray nil)
896     arrayloop
897     (setq vector nil)
898     (setq vector (mapcar 'car aarray))
899     (setq aarray (mapcar 'cdr aarray))
900     (setq rarray (append rarray (list vector)))
901     (unless (null (car aarray)) (go arrayloop))
902     (setq rmu (1+ rrmu))
903     (setq vector nil)
904     array1loop
905     (setq vector (cons '(0 . 1) vector))
906     (decf rmu)
907     (unless (< rmu 0) (go array1loop))
908     (setq aarray nil)
909     array2loop
910     (cond ((equal (car rarray) vector) nil)
911	   (t (setq aarray (cons (car rarray) aarray))))
912     (setq rarray (cdr rarray))
913     (when rarray (go array2loop))
914     (setq rarray (reverse aarray))
915     (setq temp (lsa rarray))
916     (when (or (eq temp 'singular) (eq temp 'inconsistent))
917       (return (if (null flag) nil (cxerfarg (rzero) expg n a))))
918     (setq temp (reverse  (cdr temp)))
919     (setq rmu 0)
920     (setq y 0)
921     l3   (setq y (r+ y (r* (car temp) (pexpt (list logeta 1 1) rmu))))
922     (setq temp (cdr temp))
923     (incf rmu)
924     (unless (> rmu rrmu) (go l3))
925     (return (if (null flag)
926		 (ratqu y p)
927		 (cons (r* (list expg n 1) (ratqu y p)) '(0))))))
928
929
930(defun erfarg (exparg coef)
931  (prog (num denom erfarg)
932     (setq exparg (r- exparg))
933     (unless (and (setq num (pnthrootp (ratnumerator exparg) 2))
934		  (setq denom (pnthrootp (ratdenominator exparg) 2)))
935       (return nil))
936     (setq erfarg (cons num denom))
937     (if (risch-constp
938	  (setq coef (ratqu coef (spderivative erfarg mainvar))))
939	 (return (simplify `((mtimes) ((rat) 1 2)
940			     ((mexpt) $%pi ((rat) 1 2))
941			     ,(disrep coef)
942			     ((%erf) ,(disrep erfarg))))))))
943
944(defun erfarg2 (exparg coeff &aux (var mainvar) a b c d)
945  (when (and (= (pdegree (car exparg) var) 2)
946	     (eq (caar exparg) var)
947	     (risch-pconstp (cdr exparg))
948	     (risch-constp coeff))
949    (setq a (ratqu (r* -1 (caddar exparg))
950		   (cdr exparg)))
951    (setq b (disrep (ratqu (r* -1 (polcoef (car exparg) 1))
952			   (cdr exparg))))
953    (setq c (disrep (ratqu (r* (polcoef (car exparg) 0))
954			   (cdr exparg))))
955    (setq d (ratsqrt a))
956    (setq a (disrep a))
957    (simplify `((mtimes)
958		((mtimes)
959		 ((mexpt) $%e ((mplus) ,c
960			       ((mquotient) ((mexpt) ,b 2)
961				((mtimes) 4 ,a))))
962		 ((rat) 1 2)
963		 ,(disrep coeff)
964		 ((mexpt) ,d -1)
965		 ((mexpt) $%pi ((rat) 1 2)))
966		((%erf) ((mplus)
967			 ((mtimes) ,d ,intvar)
968			 ((mtimes) ,b ((rat) 1 2) ((mexpt) ,d -1))))))))
969
970
971(defun cxerfarg (ans expg n numdenom &aux (arg (r* n (get expg 'rischarg)))
972		 (fails 0))
973  (prog (denom erfans num nerf)
974     (desetq (num . denom) numdenom)
975     (unless $erfflag (setq fails num) (go lose))
976     (if (setq erfans (erfarg arg numdenom))
977	 (return (list ans erfans)))
978     again	(when (and (not (pcoefp denom))
979			   (null (p-red denom))
980			   (eq (get (car denom) 'leadop) 'mexpt))
981		  (setq arg (r+ arg (r* (- (p-le denom))
982					(get (p-var denom) 'rischarg)))
983			denom (p-lc denom))
984		  (go again))
985     (loop for (coef exparg exppoly) in (explist num arg 1)
986	    do (setq coef (ratqu coef denom)
987		     nerf (or (erfarg2 exparg coef) (erfarg exparg coef)))
988	    (if nerf (push nerf erfans) (setq fails
989					      (pplus fails exppoly))))
990     lose (return
991	    (if (pzerop fails) (cons ans erfans)
992		(rischadd (cons ans erfans)
993			  (rischnoun (r* (ratexpt (cons (make-poly expg) 1) n)
994					 (ratqu fails (cdr numdenom)))))))))
995
996(defun explist (p oarg exps)
997  (cond ((or (pcoefp p) (not (eq 'mexpt (get (p-var p) 'leadop))))
998	 (list (list p oarg (ptimes p exps))))
999	(t (loop with narg = (get (p-var p) 'rischarg)
1000		  for (exp coef) on (p-terms p) by #'cddr
1001		  nconc (explist coef
1002				 (r+ oarg (r* exp narg))
1003				 (ptimes exps
1004					 (make-poly (p-var p) exp 1)))))))
1005
1006
1007(declare-top (special *fnewvarsw))
1008
1009(defun intsetup (exp *var)
1010  (prog (varlist clist $factorflag dlist genpairs old y z $ratfac $keepfloat
1011	 *fnewvarsw)
1012   y    (setq exp (radcan1 exp))
1013   (fnewvar exp)
1014   (setq *fnewvarsw t)
1015   a    (setq clist nil)
1016   (setq dlist nil)
1017   (setq z varlist)
1018   up   (setq y (pop z))
1019   (cond ((freeof *var y) (push y clist))
1020	 ((eq y *var) nil)
1021	 ((and (mexptp y)
1022	       (not (eq (cadr y) '$%e)))
1023	  (cond ((not (freeof *var (caddr y)))
1024		 (setq dlist `((mexpt simp)
1025			       $%e
1026			       ,(mul2* (caddr y)
1027				       `((%log) ,(cadr y)))))
1028		 (setq exp (maxima-substitute dlist y exp))
1029		 (setq varlist nil)  (go y))
1030		((atom (caddr y))
1031		 (cond ((numberp (caddr y)) (push y dlist))
1032		       (t (setq operator t)(return nil))))
1033		(t (push y dlist))))
1034	 (t (push y dlist)))
1035   (if z (go up))
1036   (if (member '$%i clist :test #'eq) (setq clist (cons '$%i (delete '$%i clist :test #'equal))))
1037   (setq varlist (append clist
1038			 (cons *var
1039			       (nreverse (sort (append dlist nil) #'intgreat)))))
1040   (orderpointer varlist)
1041   (setq old varlist)
1042   (mapc #'intset1 (cons *var dlist))
1043   (cond ((alike old varlist) (return (ratrep* exp)))
1044	 (t (go a)))))
1045
1046(defun leadop (exp)
1047  (cond ((atom exp) exp)
1048	((mqapplyp exp) (cadr exp))
1049	(t (caar exp))))
1050
1051(defun leadarg (exp)
1052  (cond ((atom exp) 0)
1053	((and (mexptp exp) (eq (cadr exp) '$%e)) (caddr exp))
1054	((mqapplyp exp) (car (subfunargs exp)))
1055	(t (cadr exp))))
1056
1057(defun intset1 (b)
1058  (let (e c d)
1059    (fnewvar
1060     (setq d (if (mexptp b)		;needed for radicals
1061		 `((mtimes simp)
1062		   ,b
1063		   ,(radcan1 (sdiff (simplify (caddr b)) *var)))
1064		 (radcan1 (sdiff (simplify b) *var)))))
1065    (setq d (ratrep* d))
1066    (setq c (ratrep* (leadarg b)))
1067    (setq e (cdr (assoc b (pair varlist genvar) :test #'equal)))
1068    (putprop e (leadop b) 'leadop)
1069    (putprop e b 'rischexpr)
1070    (putprop e (cdr d) 'rischdiff)
1071    (putprop e (cdr c) 'rischarg)))
1072
1073;; order of expressions for risch.
1074;; expressions containing erf and li last.
1075;; then order by size of expression to guarantee that
1076;; any subexpressions are considered smaller.
1077;; this relation should be transitive, since it is called by sort.
1078(defun intgreat (a b)
1079  (cond ((and (not (atom a)) (not (atom b)))
1080	 (cond ((and (not (freeof '%erf a)) (freeof '%erf b)) t)
1081	       ((and (not (freeof '$li a)) (freeof '$li b)) t)
1082	       ((and (freeof '$li a) (not (freeof '$li b))) nil)
1083	       ((and (freeof '%erf a) (not (freeof '%erf b))) nil)
1084	       ((> (conssize a) (conssize b)) t)
1085	       ((< (conssize a) (conssize b)) nil)
1086	       (t (great (resimplify (fixintgreat a))
1087			 (resimplify (fixintgreat b))))))
1088	(t (great (resimplify (fixintgreat a))
1089		  (resimplify (fixintgreat b))))))
1090
1091(defun fixintgreat (a)
1092  (subst '/_101x *var a))
1093
1094(declare-top (unspecial b beta cary context *exp degree gamma
1095			klth liflag m nogood operator
1096			r s switch switch1 *var var  y))
1097