1 /* mpn_divexact_1 -- mpn by limb exact division.
2 
3    THE FUNCTIONS IN THIS FILE ARE FOR INTERNAL USE ONLY.  THEY'RE ALMOST
4    CERTAIN TO BE SUBJECT TO INCOMPATIBLE CHANGES OR DISAPPEAR COMPLETELY IN
5    FUTURE GNU MP RELEASES.
6 
7 Copyright 2000-2003, 2005, 2013 Free Software Foundation, Inc.
8 
9 This file is part of the GNU MP Library.
10 
11 The GNU MP Library is free software; you can redistribute it and/or modify
12 it under the terms of either:
13 
14   * the GNU Lesser General Public License as published by the Free
15     Software Foundation; either version 3 of the License, or (at your
16     option) any later version.
17 
18 or
19 
20   * the GNU General Public License as published by the Free Software
21     Foundation; either version 2 of the License, or (at your option) any
22     later version.
23 
24 or both in parallel, as here.
25 
26 The GNU MP Library is distributed in the hope that it will be useful, but
27 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
28 or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
29 for more details.
30 
31 You should have received copies of the GNU General Public License and the
32 GNU Lesser General Public License along with the GNU MP Library.  If not,
33 see https://www.gnu.org/licenses/.  */
34 
35 #include "gmp.h"
36 #include "gmp-impl.h"
37 #include "longlong.h"
38 
39 
40 
41 /* Divide a={src,size} by d=divisor and store the quotient in q={dst,size}.
42    q will only be correct if d divides a exactly.
43 
44    A separate loop is used for shift==0 because n<<GMP_LIMB_BITS doesn't
45    give zero on all CPUs (for instance it doesn't on the x86s).  This
46    separate loop might run faster too, helping odd divisors.
47 
48    Possibilities:
49 
50    mpn_divexact_1c could be created, accepting and returning c.  This would
51    let a long calculation be done piece by piece.  Currently there's no
52    particular need for that, and not returning c means that a final umul can
53    be skipped.
54 
55    Another use for returning c would be letting the caller know whether the
56    division was in fact exact.  It would work just to return the carry bit
57    "c=(l>s)" and let the caller do a final umul if interested.
58 
59    When the divisor is even, the factors of two could be handled with a
60    separate mpn_rshift, instead of shifting on the fly.  That might be
61    faster on some CPUs and would mean just the shift==0 style loop would be
62    needed.
63 
64    If n<<GMP_LIMB_BITS gives zero on a particular CPU then the separate
65    shift==0 loop is unnecessary, and could be eliminated if there's no great
66    speed difference.
67 
68    It's not clear whether "/" is the best way to handle size==1.  Alpha gcc
69    2.95 for instance has a poor "/" and might prefer the modular method.
70    Perhaps a tuned parameter should control this.
71 
72    If src[size-1] < divisor then dst[size-1] will be zero, and one divide
73    step could be skipped.  A test at last step for s<divisor (or ls in the
74    even case) might be a good way to do that.  But if this code is often
75    used with small divisors then it might not be worth bothering  */
76 
77 void
mpn_divexact_1(mp_ptr dst,mp_srcptr src,mp_size_t size,mp_limb_t divisor)78 mpn_divexact_1 (mp_ptr dst, mp_srcptr src, mp_size_t size, mp_limb_t divisor)
79 {
80   mp_size_t  i;
81   mp_limb_t  c, h, l, ls, s, s_next, inverse, dummy;
82   unsigned   shift;
83 
84   ASSERT (size >= 1);
85   ASSERT (divisor != 0);
86   ASSERT (MPN_SAME_OR_SEPARATE_P (dst, src, size));
87   ASSERT_MPN (src, size);
88   ASSERT_LIMB (divisor);
89 
90   if ((divisor & 1) == 0)
91     {
92       count_trailing_zeros (shift, divisor);
93       divisor >>= shift;
94     }
95   else
96     shift = 0;
97 
98   binvert_limb (inverse, divisor);
99   divisor <<= GMP_NAIL_BITS;
100 
101   if (shift != 0)
102     {
103       c = 0;
104 
105       s = src[0];
106 
107       for (i = 1; i < size; i++)
108 	{
109 	  s_next = src[i];
110 	  ls = ((s >> shift) | (s_next << (GMP_NUMB_BITS-shift))) & GMP_NUMB_MASK;
111 	  s = s_next;
112 
113 	  SUBC_LIMB (c, l, ls, c);
114 
115 	  l = (l * inverse) & GMP_NUMB_MASK;
116 	  dst[i - 1] = l;
117 
118 	  umul_ppmm (h, dummy, l, divisor);
119 	  c += h;
120 	}
121       while (i < size);
122 
123       ls = s >> shift;
124       l = ls - c;
125       l = (l * inverse) & GMP_NUMB_MASK;
126       dst[size - 1] = l;
127     }
128   else
129     {
130       s = src[0];
131 
132       l = (s * inverse) & GMP_NUMB_MASK;
133       dst[0] = l;
134       c = 0;
135 
136       for (i = 1; i < size; i++)
137 	{
138 	  umul_ppmm (h, dummy, l, divisor);
139 	  c += h;
140 
141 	  s = src[i];
142 	  SUBC_LIMB (c, l, s, c);
143 
144 	  l = (l * inverse) & GMP_NUMB_MASK;
145 	  dst[i] = l;
146 	}
147     }
148 }
149