1 /// \ingroup newmat
2 ///@{
3 
4 /// \file solution.cpp
5 /// One dimensional solve routine.
6 
7 // Copyright (C) 1994: R B Davies
8 
9 
10 #define WANT_STREAM                  // include.h will get stream fns
11 #define WANT_MATH                    // include.h will get math fns
12 
13 #include "include.h"
14 #include "myexcept.h"
15 
16 #include "solution.h"
17 
18 #ifdef use_namespace
19 namespace RBD_COMMON {
20 #endif
21 
22 
Set(Real X)23 void R1_R1::Set(Real X)
24 {
25    if ((!minXinf && X <= minX) || (!maxXinf && X >= maxX))
26        Throw(SolutionException("X value out of range"));
27    x = X; xSet = true;
28 }
29 
operator Real()30 R1_R1::operator Real()
31 {
32    if (!xSet) Throw(SolutionException("Value of X not set"));
33    Real y = operator()();
34    return y;
35 }
36 
37 unsigned long SolutionException::Select;
38 
SolutionException(const char * a_what)39 SolutionException::SolutionException(const char* a_what) : BaseException()
40 {
41    Select = BaseException::Select;
42    AddMessage("Error detected by solution package\n");
43    AddMessage(a_what); AddMessage("\n");
44    if (a_what) Tracer::AddTrace();
45 }
46 
square(Real x)47 inline Real square(Real x) { return x*x; }
48 
LookAt(int V)49 void OneDimSolve::LookAt(int V)
50 {
51    lim--;
52    if (!lim) Throw(SolutionException("Does not converge"));
53    Last = V;
54    Real yy = function(x[V]) - YY;
55    Finish = (fabs(yy) <= accY) || (Captured && fabs(x[L]-x[U]) <= accX );
56    y[V] = vpol*yy;
57 }
58 
HFlip()59 void OneDimSolve::HFlip() { hpol=-hpol; State(U,C,L); }
60 
VFlip()61 void OneDimSolve::VFlip()
62    { vpol = -vpol; y[0] = -y[0]; y[1] = -y[1]; y[2] = -y[2]; }
63 
Flip()64 void OneDimSolve::Flip()
65 {
66    hpol=-hpol; vpol=-vpol; State(U,C,L);
67    y[0] = -y[0]; y[1] = -y[1]; y[2] = -y[2];
68 }
69 
State(int I,int J,int K)70 void OneDimSolve::State(int I, int J, int K) { L=I; C=J; U=K; }
71 
Linear(int I,int J,int K)72 void OneDimSolve::Linear(int I, int J, int K)
73 {
74    x[J] = (x[I]*y[K] - x[K]*y[I])/(y[K] - y[I]);
75    // cout << "Linear\n";
76 }
77 
Quadratic(int I,int J,int K)78 void OneDimSolve::Quadratic(int I, int J, int K)
79 {
80    // result to overwrite I
81    Real YJK, YIK, YIJ, XKI, XKJ;
82    YJK = y[J] - y[K]; YIK = y[I] - y[K]; YIJ = y[I] - y[J];
83    XKI = (x[K] - x[I]);
84    XKJ = (x[K]*y[J] - x[J]*y[K])/YJK;
85    if ( square(YJK/YIK)>(x[K] - x[J])/XKI ||
86       square(YIJ/YIK)>(x[J] - x[I])/XKI )
87    {
88       x[I] = XKJ;
89       // cout << "Quadratic - exceptional\n";
90    }
91    else
92    {
93       XKI = (x[K]*y[I] - x[I]*y[K])/YIK;
94       x[I] = (XKJ*y[I] - XKI*y[J])/YIJ;
95       // cout << "Quadratic - normal\n";
96    }
97 }
98 
Solve(Real Y,Real X,Real Dev,int Lim)99 Real OneDimSolve::Solve(Real Y, Real X, Real Dev, int Lim)
100 {
101    enum Loop { start, captured1, captured2, binary, finish };
102    Tracer et("OneDimSolve::Solve");
103    lim=Lim; Captured = false;
104    if ( Dev == 0.0 ) Throw(SolutionException("Dev is zero"));
105    L=0; C=1; U=2; vpol=1; hpol=1; y[C]=0.0; y[U]=0.0;
106    if (Dev<0.0) { hpol=-1; Dev = -Dev; }
107    YY=Y;                                // target value
108    x[L] = X;                            // initial trial value
109    if (!function.IsValid(X))
110       Throw(SolutionException("Starting value is invalid"));
111    Loop TheLoop = start;
112    for (;;)
113    {
114       switch (TheLoop)
115       {
116       case start:
117          LookAt(L); if (Finish) { TheLoop = finish; break; }
118          if (y[L]>0.0) VFlip();               // so Y[L] < 0
119 
120          x[U] = X + Dev * hpol;
121          if (!function.maxXinf && x[U] > function.maxX)
122             x[U] = (function.maxX + X) / 2.0;
123          if (!function.minXinf && x[U] < function.minX)
124             x[U] = (function.minX + X) / 2.0;
125 
126          LookAt(U); if (Finish) { TheLoop = finish; break; }
127          if (y[U] > 0.0) { TheLoop = captured1; Captured = true; break; }
128          if (y[U] == y[L])
129             Throw(SolutionException("Function is flat"));
130          if (y[U] < y[L]) HFlip();             // Change direction
131          State(L,U,C);
132          for (i=0; i<20; i++)
133          {
134             // cout << "Searching for crossing point\n";
135             // Have L C then crossing point, Y[L]<Y[C]<0
136             x[U] = x[C] + Dev * hpol;
137             if (!function.maxXinf && x[U] > function.maxX)
138             x[U] = (function.maxX + x[C]) / 2.0;
139             if (!function.minXinf && x[U] < function.minX)
140             x[U] = (function.minX + x[C]) / 2.0;
141 
142             LookAt(U); if (Finish) { TheLoop = finish; break; }
143             if (y[U] > 0) { TheLoop = captured2; Captured = true; break; }
144             if (y[U] < y[C])
145                 Throw(SolutionException("Function is not monotone"));
146             Dev *= 2.0;
147             State(C,U,L);
148          }
149          if (TheLoop != start ) break;
150          Throw(SolutionException("Cannot locate a crossing point"));
151 
152       case captured1:
153          // cout << "Captured - 1\n";
154          // We have 2 points L and U with crossing between them
155          Linear(L,C,U);                   // linear interpolation
156                                           // - result to C
157          LookAt(C); if (Finish) { TheLoop = finish; break; }
158          if (y[C] > 0.0) Flip();            // Want y[C] < 0
159          if (y[C] < 0.5*y[L]) { State(C,L,U); TheLoop = binary; break; }
160 
161       case captured2:
162          // cout << "Captured - 2\n";
163          // We have L,C before crossing, U after crossing
164          Quadratic(L,C,U);                // quad interpolation
165                                           // - result to L
166          State(C,L,U);
167          if ((x[C] - x[L])*hpol <= 0.0 || (x[C] - x[U])*hpol >= 0.0)
168             { TheLoop = captured1; break; }
169          LookAt(C); if (Finish) { TheLoop = finish; break; }
170          // cout << "Through first stage\n";
171          if (y[C] > 0.0) Flip();
172          if (y[C] > 0.5*y[L]) { TheLoop = captured2; break; }
173          else { State(C,L,U); TheLoop = captured1; break; }
174 
175       case binary:
176          // We have L, U around crossing - do binary search
177          // cout << "Binary\n";
178          for (i=3; i; i--)
179          {
180             x[C] = 0.5*(x[L]+x[U]);
181             LookAt(C); if (Finish) { TheLoop = finish; break; }
182             if (y[C]>0.0) State(L,U,C); else State(C,L,U);
183          }
184          if (TheLoop != binary) break;
185          TheLoop = captured1; break;
186 
187       case finish:
188 	 return x[Last];
189 
190       }
191    }
192 }
193 
IsValid(Real X)194 bool R1_R1::IsValid(Real X)
195 {
196    Set(X);
197    return (minXinf || x > minX) && (maxXinf || x < maxX);
198 }
199 
200 #ifdef use_namespace
201 }
202 #endif
203 
204 
205 ///@}
206