1*> \brief \b CTFTRI 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download CTFTRI + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctftri.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctftri.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctftri.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE CTFTRI( TRANSR, UPLO, DIAG, N, A, INFO ) 22* 23* .. Scalar Arguments .. 24* CHARACTER TRANSR, UPLO, DIAG 25* INTEGER INFO, N 26* .. 27* .. Array Arguments .. 28* COMPLEX A( 0: * ) 29* .. 30* 31* 32*> \par Purpose: 33* ============= 34*> 35*> \verbatim 36*> 37*> CTFTRI computes the inverse of a triangular matrix A stored in RFP 38*> format. 39*> 40*> This is a Level 3 BLAS version of the algorithm. 41*> \endverbatim 42* 43* Arguments: 44* ========== 45* 46*> \param[in] TRANSR 47*> \verbatim 48*> TRANSR is CHARACTER*1 49*> = 'N': The Normal TRANSR of RFP A is stored; 50*> = 'C': The Conjugate-transpose TRANSR of RFP A is stored. 51*> \endverbatim 52*> 53*> \param[in] UPLO 54*> \verbatim 55*> UPLO is CHARACTER*1 56*> = 'U': A is upper triangular; 57*> = 'L': A is lower triangular. 58*> \endverbatim 59*> 60*> \param[in] DIAG 61*> \verbatim 62*> DIAG is CHARACTER*1 63*> = 'N': A is non-unit triangular; 64*> = 'U': A is unit triangular. 65*> \endverbatim 66*> 67*> \param[in] N 68*> \verbatim 69*> N is INTEGER 70*> The order of the matrix A. N >= 0. 71*> \endverbatim 72*> 73*> \param[in,out] A 74*> \verbatim 75*> A is COMPLEX array, dimension ( N*(N+1)/2 ); 76*> On entry, the triangular matrix A in RFP format. RFP format 77*> is described by TRANSR, UPLO, and N as follows: If TRANSR = 78*> 'N' then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is 79*> (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'C' then RFP is 80*> the Conjugate-transpose of RFP A as defined when 81*> TRANSR = 'N'. The contents of RFP A are defined by UPLO as 82*> follows: If UPLO = 'U' the RFP A contains the nt elements of 83*> upper packed A; If UPLO = 'L' the RFP A contains the nt 84*> elements of lower packed A. The LDA of RFP A is (N+1)/2 when 85*> TRANSR = 'C'. When TRANSR is 'N' the LDA is N+1 when N is 86*> even and N is odd. See the Note below for more details. 87*> 88*> On exit, the (triangular) inverse of the original matrix, in 89*> the same storage format. 90*> \endverbatim 91*> 92*> \param[out] INFO 93*> \verbatim 94*> INFO is INTEGER 95*> = 0: successful exit 96*> < 0: if INFO = -i, the i-th argument had an illegal value 97*> > 0: if INFO = i, A(i,i) is exactly zero. The triangular 98*> matrix is singular and its inverse can not be computed. 99*> \endverbatim 100* 101* Authors: 102* ======== 103* 104*> \author Univ. of Tennessee 105*> \author Univ. of California Berkeley 106*> \author Univ. of Colorado Denver 107*> \author NAG Ltd. 108* 109*> \date December 2016 110* 111*> \ingroup complexOTHERcomputational 112* 113*> \par Further Details: 114* ===================== 115*> 116*> \verbatim 117*> 118*> We first consider Standard Packed Format when N is even. 119*> We give an example where N = 6. 120*> 121*> AP is Upper AP is Lower 122*> 123*> 00 01 02 03 04 05 00 124*> 11 12 13 14 15 10 11 125*> 22 23 24 25 20 21 22 126*> 33 34 35 30 31 32 33 127*> 44 45 40 41 42 43 44 128*> 55 50 51 52 53 54 55 129*> 130*> 131*> Let TRANSR = 'N'. RFP holds AP as follows: 132*> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last 133*> three columns of AP upper. The lower triangle A(4:6,0:2) consists of 134*> conjugate-transpose of the first three columns of AP upper. 135*> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first 136*> three columns of AP lower. The upper triangle A(0:2,0:2) consists of 137*> conjugate-transpose of the last three columns of AP lower. 138*> To denote conjugate we place -- above the element. This covers the 139*> case N even and TRANSR = 'N'. 140*> 141*> RFP A RFP A 142*> 143*> -- -- -- 144*> 03 04 05 33 43 53 145*> -- -- 146*> 13 14 15 00 44 54 147*> -- 148*> 23 24 25 10 11 55 149*> 150*> 33 34 35 20 21 22 151*> -- 152*> 00 44 45 30 31 32 153*> -- -- 154*> 01 11 55 40 41 42 155*> -- -- -- 156*> 02 12 22 50 51 52 157*> 158*> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- 159*> transpose of RFP A above. One therefore gets: 160*> 161*> 162*> RFP A RFP A 163*> 164*> -- -- -- -- -- -- -- -- -- -- 165*> 03 13 23 33 00 01 02 33 00 10 20 30 40 50 166*> -- -- -- -- -- -- -- -- -- -- 167*> 04 14 24 34 44 11 12 43 44 11 21 31 41 51 168*> -- -- -- -- -- -- -- -- -- -- 169*> 05 15 25 35 45 55 22 53 54 55 22 32 42 52 170*> 171*> 172*> We next consider Standard Packed Format when N is odd. 173*> We give an example where N = 5. 174*> 175*> AP is Upper AP is Lower 176*> 177*> 00 01 02 03 04 00 178*> 11 12 13 14 10 11 179*> 22 23 24 20 21 22 180*> 33 34 30 31 32 33 181*> 44 40 41 42 43 44 182*> 183*> 184*> Let TRANSR = 'N'. RFP holds AP as follows: 185*> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last 186*> three columns of AP upper. The lower triangle A(3:4,0:1) consists of 187*> conjugate-transpose of the first two columns of AP upper. 188*> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first 189*> three columns of AP lower. The upper triangle A(0:1,1:2) consists of 190*> conjugate-transpose of the last two columns of AP lower. 191*> To denote conjugate we place -- above the element. This covers the 192*> case N odd and TRANSR = 'N'. 193*> 194*> RFP A RFP A 195*> 196*> -- -- 197*> 02 03 04 00 33 43 198*> -- 199*> 12 13 14 10 11 44 200*> 201*> 22 23 24 20 21 22 202*> -- 203*> 00 33 34 30 31 32 204*> -- -- 205*> 01 11 44 40 41 42 206*> 207*> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- 208*> transpose of RFP A above. One therefore gets: 209*> 210*> 211*> RFP A RFP A 212*> 213*> -- -- -- -- -- -- -- -- -- 214*> 02 12 22 00 01 00 10 20 30 40 50 215*> -- -- -- -- -- -- -- -- -- 216*> 03 13 23 33 11 33 11 21 31 41 51 217*> -- -- -- -- -- -- -- -- -- 218*> 04 14 24 34 44 43 44 22 32 42 52 219*> \endverbatim 220*> 221* ===================================================================== 222 SUBROUTINE CTFTRI( TRANSR, UPLO, DIAG, N, A, INFO ) 223* 224* -- LAPACK computational routine (version 3.7.0) -- 225* -- LAPACK is a software package provided by Univ. of Tennessee, -- 226* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 227* December 2016 228* 229* .. Scalar Arguments .. 230 CHARACTER TRANSR, UPLO, DIAG 231 INTEGER INFO, N 232* .. 233* .. Array Arguments .. 234 COMPLEX A( 0: * ) 235* .. 236* 237* ===================================================================== 238* 239* .. Parameters .. 240 COMPLEX CONE 241 PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ) ) 242* .. 243* .. Local Scalars .. 244 LOGICAL LOWER, NISODD, NORMALTRANSR 245 INTEGER N1, N2, K 246* .. 247* .. External Functions .. 248 LOGICAL LSAME 249 EXTERNAL LSAME 250* .. 251* .. External Subroutines .. 252 EXTERNAL XERBLA, CTRMM, CTRTRI 253* .. 254* .. Intrinsic Functions .. 255 INTRINSIC MOD 256* .. 257* .. Executable Statements .. 258* 259* Test the input parameters. 260* 261 INFO = 0 262 NORMALTRANSR = LSAME( TRANSR, 'N' ) 263 LOWER = LSAME( UPLO, 'L' ) 264 IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'C' ) ) THEN 265 INFO = -1 266 ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN 267 INFO = -2 268 ELSE IF( .NOT.LSAME( DIAG, 'N' ) .AND. .NOT.LSAME( DIAG, 'U' ) ) 269 $ THEN 270 INFO = -3 271 ELSE IF( N.LT.0 ) THEN 272 INFO = -4 273 END IF 274 IF( INFO.NE.0 ) THEN 275 CALL XERBLA( 'CTFTRI', -INFO ) 276 RETURN 277 END IF 278* 279* Quick return if possible 280* 281 IF( N.EQ.0 ) 282 $ RETURN 283* 284* If N is odd, set NISODD = .TRUE. 285* If N is even, set K = N/2 and NISODD = .FALSE. 286* 287 IF( MOD( N, 2 ).EQ.0 ) THEN 288 K = N / 2 289 NISODD = .FALSE. 290 ELSE 291 NISODD = .TRUE. 292 END IF 293* 294* Set N1 and N2 depending on LOWER 295* 296 IF( LOWER ) THEN 297 N2 = N / 2 298 N1 = N - N2 299 ELSE 300 N1 = N / 2 301 N2 = N - N1 302 END IF 303* 304* 305* start execution: there are eight cases 306* 307 IF( NISODD ) THEN 308* 309* N is odd 310* 311 IF( NORMALTRANSR ) THEN 312* 313* N is odd and TRANSR = 'N' 314* 315 IF( LOWER ) THEN 316* 317* SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) ) 318* T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0) 319* T1 -> a(0), T2 -> a(n), S -> a(n1) 320* 321 CALL CTRTRI( 'L', DIAG, N1, A( 0 ), N, INFO ) 322 IF( INFO.GT.0 ) 323 $ RETURN 324 CALL CTRMM( 'R', 'L', 'N', DIAG, N2, N1, -CONE, A( 0 ), 325 $ N, A( N1 ), N ) 326 CALL CTRTRI( 'U', DIAG, N2, A( N ), N, INFO ) 327 IF( INFO.GT.0 ) 328 $ INFO = INFO + N1 329 IF( INFO.GT.0 ) 330 $ RETURN 331 CALL CTRMM( 'L', 'U', 'C', DIAG, N2, N1, CONE, A( N ), N, 332 $ A( N1 ), N ) 333* 334 ELSE 335* 336* SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1) 337* T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0) 338* T1 -> a(n2), T2 -> a(n1), S -> a(0) 339* 340 CALL CTRTRI( 'L', DIAG, N1, A( N2 ), N, INFO ) 341 IF( INFO.GT.0 ) 342 $ RETURN 343 CALL CTRMM( 'L', 'L', 'C', DIAG, N1, N2, -CONE, A( N2 ), 344 $ N, A( 0 ), N ) 345 CALL CTRTRI( 'U', DIAG, N2, A( N1 ), N, INFO ) 346 IF( INFO.GT.0 ) 347 $ INFO = INFO + N1 348 IF( INFO.GT.0 ) 349 $ RETURN 350 CALL CTRMM( 'R', 'U', 'N', DIAG, N1, N2, CONE, A( N1 ), 351 $ N, A( 0 ), N ) 352* 353 END IF 354* 355 ELSE 356* 357* N is odd and TRANSR = 'C' 358* 359 IF( LOWER ) THEN 360* 361* SRPA for LOWER, TRANSPOSE and N is odd 362* T1 -> a(0), T2 -> a(1), S -> a(0+n1*n1) 363* 364 CALL CTRTRI( 'U', DIAG, N1, A( 0 ), N1, INFO ) 365 IF( INFO.GT.0 ) 366 $ RETURN 367 CALL CTRMM( 'L', 'U', 'N', DIAG, N1, N2, -CONE, A( 0 ), 368 $ N1, A( N1*N1 ), N1 ) 369 CALL CTRTRI( 'L', DIAG, N2, A( 1 ), N1, INFO ) 370 IF( INFO.GT.0 ) 371 $ INFO = INFO + N1 372 IF( INFO.GT.0 ) 373 $ RETURN 374 CALL CTRMM( 'R', 'L', 'C', DIAG, N1, N2, CONE, A( 1 ), 375 $ N1, A( N1*N1 ), N1 ) 376* 377 ELSE 378* 379* SRPA for UPPER, TRANSPOSE and N is odd 380* T1 -> a(0+n2*n2), T2 -> a(0+n1*n2), S -> a(0) 381* 382 CALL CTRTRI( 'U', DIAG, N1, A( N2*N2 ), N2, INFO ) 383 IF( INFO.GT.0 ) 384 $ RETURN 385 CALL CTRMM( 'R', 'U', 'C', DIAG, N2, N1, -CONE, 386 $ A( N2*N2 ), N2, A( 0 ), N2 ) 387 CALL CTRTRI( 'L', DIAG, N2, A( N1*N2 ), N2, INFO ) 388 IF( INFO.GT.0 ) 389 $ INFO = INFO + N1 390 IF( INFO.GT.0 ) 391 $ RETURN 392 CALL CTRMM( 'L', 'L', 'N', DIAG, N2, N1, CONE, 393 $ A( N1*N2 ), N2, A( 0 ), N2 ) 394 END IF 395* 396 END IF 397* 398 ELSE 399* 400* N is even 401* 402 IF( NORMALTRANSR ) THEN 403* 404* N is even and TRANSR = 'N' 405* 406 IF( LOWER ) THEN 407* 408* SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) ) 409* T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0) 410* T1 -> a(1), T2 -> a(0), S -> a(k+1) 411* 412 CALL CTRTRI( 'L', DIAG, K, A( 1 ), N+1, INFO ) 413 IF( INFO.GT.0 ) 414 $ RETURN 415 CALL CTRMM( 'R', 'L', 'N', DIAG, K, K, -CONE, A( 1 ), 416 $ N+1, A( K+1 ), N+1 ) 417 CALL CTRTRI( 'U', DIAG, K, A( 0 ), N+1, INFO ) 418 IF( INFO.GT.0 ) 419 $ INFO = INFO + K 420 IF( INFO.GT.0 ) 421 $ RETURN 422 CALL CTRMM( 'L', 'U', 'C', DIAG, K, K, CONE, A( 0 ), N+1, 423 $ A( K+1 ), N+1 ) 424* 425 ELSE 426* 427* SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) ) 428* T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0) 429* T1 -> a(k+1), T2 -> a(k), S -> a(0) 430* 431 CALL CTRTRI( 'L', DIAG, K, A( K+1 ), N+1, INFO ) 432 IF( INFO.GT.0 ) 433 $ RETURN 434 CALL CTRMM( 'L', 'L', 'C', DIAG, K, K, -CONE, A( K+1 ), 435 $ N+1, A( 0 ), N+1 ) 436 CALL CTRTRI( 'U', DIAG, K, A( K ), N+1, INFO ) 437 IF( INFO.GT.0 ) 438 $ INFO = INFO + K 439 IF( INFO.GT.0 ) 440 $ RETURN 441 CALL CTRMM( 'R', 'U', 'N', DIAG, K, K, CONE, A( K ), N+1, 442 $ A( 0 ), N+1 ) 443 END IF 444 ELSE 445* 446* N is even and TRANSR = 'C' 447* 448 IF( LOWER ) THEN 449* 450* SRPA for LOWER, TRANSPOSE and N is even (see paper) 451* T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1) 452* T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k 453* 454 CALL CTRTRI( 'U', DIAG, K, A( K ), K, INFO ) 455 IF( INFO.GT.0 ) 456 $ RETURN 457 CALL CTRMM( 'L', 'U', 'N', DIAG, K, K, -CONE, A( K ), K, 458 $ A( K*( K+1 ) ), K ) 459 CALL CTRTRI( 'L', DIAG, K, A( 0 ), K, INFO ) 460 IF( INFO.GT.0 ) 461 $ INFO = INFO + K 462 IF( INFO.GT.0 ) 463 $ RETURN 464 CALL CTRMM( 'R', 'L', 'C', DIAG, K, K, CONE, A( 0 ), K, 465 $ A( K*( K+1 ) ), K ) 466 ELSE 467* 468* SRPA for UPPER, TRANSPOSE and N is even (see paper) 469* T1 -> B(0,k+1), T2 -> B(0,k), S -> B(0,0) 470* T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k 471* 472 CALL CTRTRI( 'U', DIAG, K, A( K*( K+1 ) ), K, INFO ) 473 IF( INFO.GT.0 ) 474 $ RETURN 475 CALL CTRMM( 'R', 'U', 'C', DIAG, K, K, -CONE, 476 $ A( K*( K+1 ) ), K, A( 0 ), K ) 477 CALL CTRTRI( 'L', DIAG, K, A( K*K ), K, INFO ) 478 IF( INFO.GT.0 ) 479 $ INFO = INFO + K 480 IF( INFO.GT.0 ) 481 $ RETURN 482 CALL CTRMM( 'L', 'L', 'N', DIAG, K, K, CONE, A( K*K ), K, 483 $ A( 0 ), K ) 484 END IF 485 END IF 486 END IF 487* 488 RETURN 489* 490* End of CTFTRI 491* 492 END 493