1*> \brief \b ZGBTRF
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download ZGBTRF + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgbtrf.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgbtrf.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgbtrf.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE ZGBTRF( M, N, KL, KU, AB, LDAB, IPIV, INFO )
22*
23*       .. Scalar Arguments ..
24*       INTEGER            INFO, KL, KU, LDAB, M, N
25*       ..
26*       .. Array Arguments ..
27*       INTEGER            IPIV( * )
28*       COMPLEX*16         AB( LDAB, * )
29*       ..
30*
31*
32*> \par Purpose:
33*  =============
34*>
35*> \verbatim
36*>
37*> ZGBTRF computes an LU factorization of a complex m-by-n band matrix A
38*> using partial pivoting with row interchanges.
39*>
40*> This is the blocked version of the algorithm, calling Level 3 BLAS.
41*> \endverbatim
42*
43*  Arguments:
44*  ==========
45*
46*> \param[in] M
47*> \verbatim
48*>          M is INTEGER
49*>          The number of rows of the matrix A.  M >= 0.
50*> \endverbatim
51*>
52*> \param[in] N
53*> \verbatim
54*>          N is INTEGER
55*>          The number of columns of the matrix A.  N >= 0.
56*> \endverbatim
57*>
58*> \param[in] KL
59*> \verbatim
60*>          KL is INTEGER
61*>          The number of subdiagonals within the band of A.  KL >= 0.
62*> \endverbatim
63*>
64*> \param[in] KU
65*> \verbatim
66*>          KU is INTEGER
67*>          The number of superdiagonals within the band of A.  KU >= 0.
68*> \endverbatim
69*>
70*> \param[in,out] AB
71*> \verbatim
72*>          AB is COMPLEX*16 array, dimension (LDAB,N)
73*>          On entry, the matrix A in band storage, in rows KL+1 to
74*>          2*KL+KU+1; rows 1 to KL of the array need not be set.
75*>          The j-th column of A is stored in the j-th column of the
76*>          array AB as follows:
77*>          AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
78*>
79*>          On exit, details of the factorization: U is stored as an
80*>          upper triangular band matrix with KL+KU superdiagonals in
81*>          rows 1 to KL+KU+1, and the multipliers used during the
82*>          factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
83*>          See below for further details.
84*> \endverbatim
85*>
86*> \param[in] LDAB
87*> \verbatim
88*>          LDAB is INTEGER
89*>          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.
90*> \endverbatim
91*>
92*> \param[out] IPIV
93*> \verbatim
94*>          IPIV is INTEGER array, dimension (min(M,N))
95*>          The pivot indices; for 1 <= i <= min(M,N), row i of the
96*>          matrix was interchanged with row IPIV(i).
97*> \endverbatim
98*>
99*> \param[out] INFO
100*> \verbatim
101*>          INFO is INTEGER
102*>          = 0: successful exit
103*>          < 0: if INFO = -i, the i-th argument had an illegal value
104*>          > 0: if INFO = +i, U(i,i) is exactly zero. The factorization
105*>               has been completed, but the factor U is exactly
106*>               singular, and division by zero will occur if it is used
107*>               to solve a system of equations.
108*> \endverbatim
109*
110*  Authors:
111*  ========
112*
113*> \author Univ. of Tennessee
114*> \author Univ. of California Berkeley
115*> \author Univ. of Colorado Denver
116*> \author NAG Ltd.
117*
118*> \date December 2016
119*
120*> \ingroup complex16GBcomputational
121*
122*> \par Further Details:
123*  =====================
124*>
125*> \verbatim
126*>
127*>  The band storage scheme is illustrated by the following example, when
128*>  M = N = 6, KL = 2, KU = 1:
129*>
130*>  On entry:                       On exit:
131*>
132*>      *    *    *    +    +    +       *    *    *   u14  u25  u36
133*>      *    *    +    +    +    +       *    *   u13  u24  u35  u46
134*>      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56
135*>     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66
136*>     a21  a32  a43  a54  a65   *      m21  m32  m43  m54  m65   *
137*>     a31  a42  a53  a64   *    *      m31  m42  m53  m64   *    *
138*>
139*>  Array elements marked * are not used by the routine; elements marked
140*>  + need not be set on entry, but are required by the routine to store
141*>  elements of U because of fill-in resulting from the row interchanges.
142*> \endverbatim
143*>
144*  =====================================================================
145      SUBROUTINE ZGBTRF( M, N, KL, KU, AB, LDAB, IPIV, INFO )
146*
147*  -- LAPACK computational routine (version 3.7.0) --
148*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
149*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
150*     December 2016
151*
152*     .. Scalar Arguments ..
153      INTEGER            INFO, KL, KU, LDAB, M, N
154*     ..
155*     .. Array Arguments ..
156      INTEGER            IPIV( * )
157      COMPLEX*16         AB( LDAB, * )
158*     ..
159*
160*  =====================================================================
161*
162*     .. Parameters ..
163      COMPLEX*16         ONE, ZERO
164      PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ),
165     $                   ZERO = ( 0.0D+0, 0.0D+0 ) )
166      INTEGER            NBMAX, LDWORK
167      PARAMETER          ( NBMAX = 64, LDWORK = NBMAX+1 )
168*     ..
169*     .. Local Scalars ..
170      INTEGER            I, I2, I3, II, IP, J, J2, J3, JB, JJ, JM, JP,
171     $                   JU, K2, KM, KV, NB, NW
172      COMPLEX*16         TEMP
173*     ..
174*     .. Local Arrays ..
175      COMPLEX*16         WORK13( LDWORK, NBMAX ),
176     $                   WORK31( LDWORK, NBMAX )
177*     ..
178*     .. External Functions ..
179      INTEGER            ILAENV, IZAMAX
180      EXTERNAL           ILAENV, IZAMAX
181*     ..
182*     .. External Subroutines ..
183      EXTERNAL           XERBLA, ZCOPY, ZGBTF2, ZGEMM, ZGERU, ZLASWP,
184     $                   ZSCAL, ZSWAP, ZTRSM
185*     ..
186*     .. Intrinsic Functions ..
187      INTRINSIC          MAX, MIN
188*     ..
189*     .. Executable Statements ..
190*
191*     KV is the number of superdiagonals in the factor U, allowing for
192*     fill-in
193*
194      KV = KU + KL
195*
196*     Test the input parameters.
197*
198      INFO = 0
199      IF( M.LT.0 ) THEN
200         INFO = -1
201      ELSE IF( N.LT.0 ) THEN
202         INFO = -2
203      ELSE IF( KL.LT.0 ) THEN
204         INFO = -3
205      ELSE IF( KU.LT.0 ) THEN
206         INFO = -4
207      ELSE IF( LDAB.LT.KL+KV+1 ) THEN
208         INFO = -6
209      END IF
210      IF( INFO.NE.0 ) THEN
211         CALL XERBLA( 'ZGBTRF', -INFO )
212         RETURN
213      END IF
214*
215*     Quick return if possible
216*
217      IF( M.EQ.0 .OR. N.EQ.0 )
218     $   RETURN
219*
220*     Determine the block size for this environment
221*
222      NB = ILAENV( 1, 'ZGBTRF', ' ', M, N, KL, KU )
223*
224*     The block size must not exceed the limit set by the size of the
225*     local arrays WORK13 and WORK31.
226*
227      NB = MIN( NB, NBMAX )
228*
229      IF( NB.LE.1 .OR. NB.GT.KL ) THEN
230*
231*        Use unblocked code
232*
233         CALL ZGBTF2( M, N, KL, KU, AB, LDAB, IPIV, INFO )
234      ELSE
235*
236*        Use blocked code
237*
238*        Zero the superdiagonal elements of the work array WORK13
239*
240         DO 20 J = 1, NB
241            DO 10 I = 1, J - 1
242               WORK13( I, J ) = ZERO
243   10       CONTINUE
244   20    CONTINUE
245*
246*        Zero the subdiagonal elements of the work array WORK31
247*
248         DO 40 J = 1, NB
249            DO 30 I = J + 1, NB
250               WORK31( I, J ) = ZERO
251   30       CONTINUE
252   40    CONTINUE
253*
254*        Gaussian elimination with partial pivoting
255*
256*        Set fill-in elements in columns KU+2 to KV to zero
257*
258         DO 60 J = KU + 2, MIN( KV, N )
259            DO 50 I = KV - J + 2, KL
260               AB( I, J ) = ZERO
261   50       CONTINUE
262   60    CONTINUE
263*
264*        JU is the index of the last column affected by the current
265*        stage of the factorization
266*
267         JU = 1
268*
269         DO 180 J = 1, MIN( M, N ), NB
270            JB = MIN( NB, MIN( M, N )-J+1 )
271*
272*           The active part of the matrix is partitioned
273*
274*              A11   A12   A13
275*              A21   A22   A23
276*              A31   A32   A33
277*
278*           Here A11, A21 and A31 denote the current block of JB columns
279*           which is about to be factorized. The number of rows in the
280*           partitioning are JB, I2, I3 respectively, and the numbers
281*           of columns are JB, J2, J3. The superdiagonal elements of A13
282*           and the subdiagonal elements of A31 lie outside the band.
283*
284            I2 = MIN( KL-JB, M-J-JB+1 )
285            I3 = MIN( JB, M-J-KL+1 )
286*
287*           J2 and J3 are computed after JU has been updated.
288*
289*           Factorize the current block of JB columns
290*
291            DO 80 JJ = J, J + JB - 1
292*
293*              Set fill-in elements in column JJ+KV to zero
294*
295               IF( JJ+KV.LE.N ) THEN
296                  DO 70 I = 1, KL
297                     AB( I, JJ+KV ) = ZERO
298   70             CONTINUE
299               END IF
300*
301*              Find pivot and test for singularity. KM is the number of
302*              subdiagonal elements in the current column.
303*
304               KM = MIN( KL, M-JJ )
305               JP = IZAMAX( KM+1, AB( KV+1, JJ ), 1 )
306               IPIV( JJ ) = JP + JJ - J
307               IF( AB( KV+JP, JJ ).NE.ZERO ) THEN
308                  JU = MAX( JU, MIN( JJ+KU+JP-1, N ) )
309                  IF( JP.NE.1 ) THEN
310*
311*                    Apply interchange to columns J to J+JB-1
312*
313                     IF( JP+JJ-1.LT.J+KL ) THEN
314*
315                        CALL ZSWAP( JB, AB( KV+1+JJ-J, J ), LDAB-1,
316     $                              AB( KV+JP+JJ-J, J ), LDAB-1 )
317                     ELSE
318*
319*                       The interchange affects columns J to JJ-1 of A31
320*                       which are stored in the work array WORK31
321*
322                        CALL ZSWAP( JJ-J, AB( KV+1+JJ-J, J ), LDAB-1,
323     $                              WORK31( JP+JJ-J-KL, 1 ), LDWORK )
324                        CALL ZSWAP( J+JB-JJ, AB( KV+1, JJ ), LDAB-1,
325     $                              AB( KV+JP, JJ ), LDAB-1 )
326                     END IF
327                  END IF
328*
329*                 Compute multipliers
330*
331                  CALL ZSCAL( KM, ONE / AB( KV+1, JJ ), AB( KV+2, JJ ),
332     $                        1 )
333*
334*                 Update trailing submatrix within the band and within
335*                 the current block. JM is the index of the last column
336*                 which needs to be updated.
337*
338                  JM = MIN( JU, J+JB-1 )
339                  IF( JM.GT.JJ )
340     $               CALL ZGERU( KM, JM-JJ, -ONE, AB( KV+2, JJ ), 1,
341     $                           AB( KV, JJ+1 ), LDAB-1,
342     $                           AB( KV+1, JJ+1 ), LDAB-1 )
343               ELSE
344*
345*                 If pivot is zero, set INFO to the index of the pivot
346*                 unless a zero pivot has already been found.
347*
348                  IF( INFO.EQ.0 )
349     $               INFO = JJ
350               END IF
351*
352*              Copy current column of A31 into the work array WORK31
353*
354               NW = MIN( JJ-J+1, I3 )
355               IF( NW.GT.0 )
356     $            CALL ZCOPY( NW, AB( KV+KL+1-JJ+J, JJ ), 1,
357     $                        WORK31( 1, JJ-J+1 ), 1 )
358   80       CONTINUE
359            IF( J+JB.LE.N ) THEN
360*
361*              Apply the row interchanges to the other blocks.
362*
363               J2 = MIN( JU-J+1, KV ) - JB
364               J3 = MAX( 0, JU-J-KV+1 )
365*
366*              Use ZLASWP to apply the row interchanges to A12, A22, and
367*              A32.
368*
369               CALL ZLASWP( J2, AB( KV+1-JB, J+JB ), LDAB-1, 1, JB,
370     $                      IPIV( J ), 1 )
371*
372*              Adjust the pivot indices.
373*
374               DO 90 I = J, J + JB - 1
375                  IPIV( I ) = IPIV( I ) + J - 1
376   90          CONTINUE
377*
378*              Apply the row interchanges to A13, A23, and A33
379*              columnwise.
380*
381               K2 = J - 1 + JB + J2
382               DO 110 I = 1, J3
383                  JJ = K2 + I
384                  DO 100 II = J + I - 1, J + JB - 1
385                     IP = IPIV( II )
386                     IF( IP.NE.II ) THEN
387                        TEMP = AB( KV+1+II-JJ, JJ )
388                        AB( KV+1+II-JJ, JJ ) = AB( KV+1+IP-JJ, JJ )
389                        AB( KV+1+IP-JJ, JJ ) = TEMP
390                     END IF
391  100             CONTINUE
392  110          CONTINUE
393*
394*              Update the relevant part of the trailing submatrix
395*
396               IF( J2.GT.0 ) THEN
397*
398*                 Update A12
399*
400                  CALL ZTRSM( 'Left', 'Lower', 'No transpose', 'Unit',
401     $                        JB, J2, ONE, AB( KV+1, J ), LDAB-1,
402     $                        AB( KV+1-JB, J+JB ), LDAB-1 )
403*
404                  IF( I2.GT.0 ) THEN
405*
406*                    Update A22
407*
408                     CALL ZGEMM( 'No transpose', 'No transpose', I2, J2,
409     $                           JB, -ONE, AB( KV+1+JB, J ), LDAB-1,
410     $                           AB( KV+1-JB, J+JB ), LDAB-1, ONE,
411     $                           AB( KV+1, J+JB ), LDAB-1 )
412                  END IF
413*
414                  IF( I3.GT.0 ) THEN
415*
416*                    Update A32
417*
418                     CALL ZGEMM( 'No transpose', 'No transpose', I3, J2,
419     $                           JB, -ONE, WORK31, LDWORK,
420     $                           AB( KV+1-JB, J+JB ), LDAB-1, ONE,
421     $                           AB( KV+KL+1-JB, J+JB ), LDAB-1 )
422                  END IF
423               END IF
424*
425               IF( J3.GT.0 ) THEN
426*
427*                 Copy the lower triangle of A13 into the work array
428*                 WORK13
429*
430                  DO 130 JJ = 1, J3
431                     DO 120 II = JJ, JB
432                        WORK13( II, JJ ) = AB( II-JJ+1, JJ+J+KV-1 )
433  120                CONTINUE
434  130             CONTINUE
435*
436*                 Update A13 in the work array
437*
438                  CALL ZTRSM( 'Left', 'Lower', 'No transpose', 'Unit',
439     $                        JB, J3, ONE, AB( KV+1, J ), LDAB-1,
440     $                        WORK13, LDWORK )
441*
442                  IF( I2.GT.0 ) THEN
443*
444*                    Update A23
445*
446                     CALL ZGEMM( 'No transpose', 'No transpose', I2, J3,
447     $                           JB, -ONE, AB( KV+1+JB, J ), LDAB-1,
448     $                           WORK13, LDWORK, ONE, AB( 1+JB, J+KV ),
449     $                           LDAB-1 )
450                  END IF
451*
452                  IF( I3.GT.0 ) THEN
453*
454*                    Update A33
455*
456                     CALL ZGEMM( 'No transpose', 'No transpose', I3, J3,
457     $                           JB, -ONE, WORK31, LDWORK, WORK13,
458     $                           LDWORK, ONE, AB( 1+KL, J+KV ), LDAB-1 )
459                  END IF
460*
461*                 Copy the lower triangle of A13 back into place
462*
463                  DO 150 JJ = 1, J3
464                     DO 140 II = JJ, JB
465                        AB( II-JJ+1, JJ+J+KV-1 ) = WORK13( II, JJ )
466  140                CONTINUE
467  150             CONTINUE
468               END IF
469            ELSE
470*
471*              Adjust the pivot indices.
472*
473               DO 160 I = J, J + JB - 1
474                  IPIV( I ) = IPIV( I ) + J - 1
475  160          CONTINUE
476            END IF
477*
478*           Partially undo the interchanges in the current block to
479*           restore the upper triangular form of A31 and copy the upper
480*           triangle of A31 back into place
481*
482            DO 170 JJ = J + JB - 1, J, -1
483               JP = IPIV( JJ ) - JJ + 1
484               IF( JP.NE.1 ) THEN
485*
486*                 Apply interchange to columns J to JJ-1
487*
488                  IF( JP+JJ-1.LT.J+KL ) THEN
489*
490*                    The interchange does not affect A31
491*
492                     CALL ZSWAP( JJ-J, AB( KV+1+JJ-J, J ), LDAB-1,
493     $                           AB( KV+JP+JJ-J, J ), LDAB-1 )
494                  ELSE
495*
496*                    The interchange does affect A31
497*
498                     CALL ZSWAP( JJ-J, AB( KV+1+JJ-J, J ), LDAB-1,
499     $                           WORK31( JP+JJ-J-KL, 1 ), LDWORK )
500                  END IF
501               END IF
502*
503*              Copy the current column of A31 back into place
504*
505               NW = MIN( I3, JJ-J+1 )
506               IF( NW.GT.0 )
507     $            CALL ZCOPY( NW, WORK31( 1, JJ-J+1 ), 1,
508     $                        AB( KV+KL+1-JJ+J, JJ ), 1 )
509  170       CONTINUE
510  180    CONTINUE
511      END IF
512*
513      RETURN
514*
515*     End of ZGBTRF
516*
517      END
518