1*> \brief \b ZLA_GERFSX_EXTENDED
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download ZLA_GERFSX_EXTENDED + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zla_gerfsx_extended.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zla_gerfsx_extended.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zla_gerfsx_extended.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE ZLA_GERFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, NRHS, A,
22*                                       LDA, AF, LDAF, IPIV, COLEQU, C, B,
23*                                       LDB, Y, LDY, BERR_OUT, N_NORMS,
24*                                       ERRS_N, ERRS_C, RES, AYB, DY,
25*                                       Y_TAIL, RCOND, ITHRESH, RTHRESH,
26*                                       DZ_UB, IGNORE_CWISE, INFO )
27*
28*       .. Scalar Arguments ..
29*       INTEGER            INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
30*      $                   TRANS_TYPE, N_NORMS
31*       LOGICAL            COLEQU, IGNORE_CWISE
32*       INTEGER            ITHRESH
33*       DOUBLE PRECISION   RTHRESH, DZ_UB
34*       ..
35*       .. Array Arguments
36*       INTEGER            IPIV( * )
37*       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
38*      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
39*       DOUBLE PRECISION   C( * ), AYB( * ), RCOND, BERR_OUT( * ),
40*      $                   ERRS_N( NRHS, * ), ERRS_C( NRHS, * )
41*       ..
42*
43*
44*> \par Purpose:
45*  =============
46*>
47*> \verbatim
48*>
49*> ZLA_GERFSX_EXTENDED improves the computed solution to a system of
50*> linear equations by performing extra-precise iterative refinement
51*> and provides error bounds and backward error estimates for the solution.
52*> This subroutine is called by ZGERFSX to perform iterative refinement.
53*> In addition to normwise error bound, the code provides maximum
54*> componentwise error bound if possible. See comments for ERRS_N
55*> and ERRS_C for details of the error bounds. Note that this
56*> subroutine is only resonsible for setting the second fields of
57*> ERRS_N and ERRS_C.
58*> \endverbatim
59*
60*  Arguments:
61*  ==========
62*
63*> \param[in] PREC_TYPE
64*> \verbatim
65*>          PREC_TYPE is INTEGER
66*>     Specifies the intermediate precision to be used in refinement.
67*>     The value is defined by ILAPREC(P) where P is a CHARACTER and P
68*>          = 'S':  Single
69*>          = 'D':  Double
70*>          = 'I':  Indigenous
71*>          = 'X' or 'E':  Extra
72*> \endverbatim
73*>
74*> \param[in] TRANS_TYPE
75*> \verbatim
76*>          TRANS_TYPE is INTEGER
77*>     Specifies the transposition operation on A.
78*>     The value is defined by ILATRANS(T) where T is a CHARACTER and T
79*>          = 'N':  No transpose
80*>          = 'T':  Transpose
81*>          = 'C':  Conjugate transpose
82*> \endverbatim
83*>
84*> \param[in] N
85*> \verbatim
86*>          N is INTEGER
87*>     The number of linear equations, i.e., the order of the
88*>     matrix A.  N >= 0.
89*> \endverbatim
90*>
91*> \param[in] NRHS
92*> \verbatim
93*>          NRHS is INTEGER
94*>     The number of right-hand-sides, i.e., the number of columns of the
95*>     matrix B.
96*> \endverbatim
97*>
98*> \param[in] A
99*> \verbatim
100*>          A is COMPLEX*16 array, dimension (LDA,N)
101*>     On entry, the N-by-N matrix A.
102*> \endverbatim
103*>
104*> \param[in] LDA
105*> \verbatim
106*>          LDA is INTEGER
107*>     The leading dimension of the array A.  LDA >= max(1,N).
108*> \endverbatim
109*>
110*> \param[in] AF
111*> \verbatim
112*>          AF is COMPLEX*16 array, dimension (LDAF,N)
113*>     The factors L and U from the factorization
114*>     A = P*L*U as computed by ZGETRF.
115*> \endverbatim
116*>
117*> \param[in] LDAF
118*> \verbatim
119*>          LDAF is INTEGER
120*>     The leading dimension of the array AF.  LDAF >= max(1,N).
121*> \endverbatim
122*>
123*> \param[in] IPIV
124*> \verbatim
125*>          IPIV is INTEGER array, dimension (N)
126*>     The pivot indices from the factorization A = P*L*U
127*>     as computed by ZGETRF; row i of the matrix was interchanged
128*>     with row IPIV(i).
129*> \endverbatim
130*>
131*> \param[in] COLEQU
132*> \verbatim
133*>          COLEQU is LOGICAL
134*>     If .TRUE. then column equilibration was done to A before calling
135*>     this routine. This is needed to compute the solution and error
136*>     bounds correctly.
137*> \endverbatim
138*>
139*> \param[in] C
140*> \verbatim
141*>          C is DOUBLE PRECISION array, dimension (N)
142*>     The column scale factors for A. If COLEQU = .FALSE., C
143*>     is not accessed. If C is input, each element of C should be a power
144*>     of the radix to ensure a reliable solution and error estimates.
145*>     Scaling by powers of the radix does not cause rounding errors unless
146*>     the result underflows or overflows. Rounding errors during scaling
147*>     lead to refining with a matrix that is not equivalent to the
148*>     input matrix, producing error estimates that may not be
149*>     reliable.
150*> \endverbatim
151*>
152*> \param[in] B
153*> \verbatim
154*>          B is COMPLEX*16 array, dimension (LDB,NRHS)
155*>     The right-hand-side matrix B.
156*> \endverbatim
157*>
158*> \param[in] LDB
159*> \verbatim
160*>          LDB is INTEGER
161*>     The leading dimension of the array B.  LDB >= max(1,N).
162*> \endverbatim
163*>
164*> \param[in,out] Y
165*> \verbatim
166*>          Y is COMPLEX*16 array, dimension (LDY,NRHS)
167*>     On entry, the solution matrix X, as computed by ZGETRS.
168*>     On exit, the improved solution matrix Y.
169*> \endverbatim
170*>
171*> \param[in] LDY
172*> \verbatim
173*>          LDY is INTEGER
174*>     The leading dimension of the array Y.  LDY >= max(1,N).
175*> \endverbatim
176*>
177*> \param[out] BERR_OUT
178*> \verbatim
179*>          BERR_OUT is DOUBLE PRECISION array, dimension (NRHS)
180*>     On exit, BERR_OUT(j) contains the componentwise relative backward
181*>     error for right-hand-side j from the formula
182*>         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
183*>     where abs(Z) is the componentwise absolute value of the matrix
184*>     or vector Z. This is computed by ZLA_LIN_BERR.
185*> \endverbatim
186*>
187*> \param[in] N_NORMS
188*> \verbatim
189*>          N_NORMS is INTEGER
190*>     Determines which error bounds to return (see ERRS_N
191*>     and ERRS_C).
192*>     If N_NORMS >= 1 return normwise error bounds.
193*>     If N_NORMS >= 2 return componentwise error bounds.
194*> \endverbatim
195*>
196*> \param[in,out] ERRS_N
197*> \verbatim
198*>          ERRS_N is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
199*>     For each right-hand side, this array contains information about
200*>     various error bounds and condition numbers corresponding to the
201*>     normwise relative error, which is defined as follows:
202*>
203*>     Normwise relative error in the ith solution vector:
204*>             max_j (abs(XTRUE(j,i) - X(j,i)))
205*>            ------------------------------
206*>                  max_j abs(X(j,i))
207*>
208*>     The array is indexed by the type of error information as described
209*>     below. There currently are up to three pieces of information
210*>     returned.
211*>
212*>     The first index in ERRS_N(i,:) corresponds to the ith
213*>     right-hand side.
214*>
215*>     The second index in ERRS_N(:,err) contains the following
216*>     three fields:
217*>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
218*>              reciprocal condition number is less than the threshold
219*>              sqrt(n) * slamch('Epsilon').
220*>
221*>     err = 2 "Guaranteed" error bound: The estimated forward error,
222*>              almost certainly within a factor of 10 of the true error
223*>              so long as the next entry is greater than the threshold
224*>              sqrt(n) * slamch('Epsilon'). This error bound should only
225*>              be trusted if the previous boolean is true.
226*>
227*>     err = 3  Reciprocal condition number: Estimated normwise
228*>              reciprocal condition number.  Compared with the threshold
229*>              sqrt(n) * slamch('Epsilon') to determine if the error
230*>              estimate is "guaranteed". These reciprocal condition
231*>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
232*>              appropriately scaled matrix Z.
233*>              Let Z = S*A, where S scales each row by a power of the
234*>              radix so all absolute row sums of Z are approximately 1.
235*>
236*>     This subroutine is only responsible for setting the second field
237*>     above.
238*>     See Lapack Working Note 165 for further details and extra
239*>     cautions.
240*> \endverbatim
241*>
242*> \param[in,out] ERRS_C
243*> \verbatim
244*>          ERRS_C is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
245*>     For each right-hand side, this array contains information about
246*>     various error bounds and condition numbers corresponding to the
247*>     componentwise relative error, which is defined as follows:
248*>
249*>     Componentwise relative error in the ith solution vector:
250*>                    abs(XTRUE(j,i) - X(j,i))
251*>             max_j ----------------------
252*>                         abs(X(j,i))
253*>
254*>     The array is indexed by the right-hand side i (on which the
255*>     componentwise relative error depends), and the type of error
256*>     information as described below. There currently are up to three
257*>     pieces of information returned for each right-hand side. If
258*>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
259*>     ERRS_C is not accessed.  If N_ERR_BNDS < 3, then at most
260*>     the first (:,N_ERR_BNDS) entries are returned.
261*>
262*>     The first index in ERRS_C(i,:) corresponds to the ith
263*>     right-hand side.
264*>
265*>     The second index in ERRS_C(:,err) contains the following
266*>     three fields:
267*>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
268*>              reciprocal condition number is less than the threshold
269*>              sqrt(n) * slamch('Epsilon').
270*>
271*>     err = 2 "Guaranteed" error bound: The estimated forward error,
272*>              almost certainly within a factor of 10 of the true error
273*>              so long as the next entry is greater than the threshold
274*>              sqrt(n) * slamch('Epsilon'). This error bound should only
275*>              be trusted if the previous boolean is true.
276*>
277*>     err = 3  Reciprocal condition number: Estimated componentwise
278*>              reciprocal condition number.  Compared with the threshold
279*>              sqrt(n) * slamch('Epsilon') to determine if the error
280*>              estimate is "guaranteed". These reciprocal condition
281*>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
282*>              appropriately scaled matrix Z.
283*>              Let Z = S*(A*diag(x)), where x is the solution for the
284*>              current right-hand side and S scales each row of
285*>              A*diag(x) by a power of the radix so all absolute row
286*>              sums of Z are approximately 1.
287*>
288*>     This subroutine is only responsible for setting the second field
289*>     above.
290*>     See Lapack Working Note 165 for further details and extra
291*>     cautions.
292*> \endverbatim
293*>
294*> \param[in] RES
295*> \verbatim
296*>          RES is COMPLEX*16 array, dimension (N)
297*>     Workspace to hold the intermediate residual.
298*> \endverbatim
299*>
300*> \param[in] AYB
301*> \verbatim
302*>          AYB is DOUBLE PRECISION array, dimension (N)
303*>     Workspace.
304*> \endverbatim
305*>
306*> \param[in] DY
307*> \verbatim
308*>          DY is COMPLEX*16 array, dimension (N)
309*>     Workspace to hold the intermediate solution.
310*> \endverbatim
311*>
312*> \param[in] Y_TAIL
313*> \verbatim
314*>          Y_TAIL is COMPLEX*16 array, dimension (N)
315*>     Workspace to hold the trailing bits of the intermediate solution.
316*> \endverbatim
317*>
318*> \param[in] RCOND
319*> \verbatim
320*>          RCOND is DOUBLE PRECISION
321*>     Reciprocal scaled condition number.  This is an estimate of the
322*>     reciprocal Skeel condition number of the matrix A after
323*>     equilibration (if done).  If this is less than the machine
324*>     precision (in particular, if it is zero), the matrix is singular
325*>     to working precision.  Note that the error may still be small even
326*>     if this number is very small and the matrix appears ill-
327*>     conditioned.
328*> \endverbatim
329*>
330*> \param[in] ITHRESH
331*> \verbatim
332*>          ITHRESH is INTEGER
333*>     The maximum number of residual computations allowed for
334*>     refinement. The default is 10. For 'aggressive' set to 100 to
335*>     permit convergence using approximate factorizations or
336*>     factorizations other than LU. If the factorization uses a
337*>     technique other than Gaussian elimination, the guarantees in
338*>     ERRS_N and ERRS_C may no longer be trustworthy.
339*> \endverbatim
340*>
341*> \param[in] RTHRESH
342*> \verbatim
343*>          RTHRESH is DOUBLE PRECISION
344*>     Determines when to stop refinement if the error estimate stops
345*>     decreasing. Refinement will stop when the next solution no longer
346*>     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
347*>     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
348*>     default value is 0.5. For 'aggressive' set to 0.9 to permit
349*>     convergence on extremely ill-conditioned matrices. See LAWN 165
350*>     for more details.
351*> \endverbatim
352*>
353*> \param[in] DZ_UB
354*> \verbatim
355*>          DZ_UB is DOUBLE PRECISION
356*>     Determines when to start considering componentwise convergence.
357*>     Componentwise convergence is only considered after each component
358*>     of the solution Y is stable, which we definte as the relative
359*>     change in each component being less than DZ_UB. The default value
360*>     is 0.25, requiring the first bit to be stable. See LAWN 165 for
361*>     more details.
362*> \endverbatim
363*>
364*> \param[in] IGNORE_CWISE
365*> \verbatim
366*>          IGNORE_CWISE is LOGICAL
367*>     If .TRUE. then ignore componentwise convergence. Default value
368*>     is .FALSE..
369*> \endverbatim
370*>
371*> \param[out] INFO
372*> \verbatim
373*>          INFO is INTEGER
374*>       = 0:  Successful exit.
375*>       < 0:  if INFO = -i, the ith argument to ZGETRS had an illegal
376*>             value
377*> \endverbatim
378*
379*  Authors:
380*  ========
381*
382*> \author Univ. of Tennessee
383*> \author Univ. of California Berkeley
384*> \author Univ. of Colorado Denver
385*> \author NAG Ltd.
386*
387*> \date June 2017
388*
389*> \ingroup complex16GEcomputational
390*
391*  =====================================================================
392      SUBROUTINE ZLA_GERFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, NRHS, A,
393     $                                LDA, AF, LDAF, IPIV, COLEQU, C, B,
394     $                                LDB, Y, LDY, BERR_OUT, N_NORMS,
395     $                                ERRS_N, ERRS_C, RES, AYB, DY,
396     $                                Y_TAIL, RCOND, ITHRESH, RTHRESH,
397     $                                DZ_UB, IGNORE_CWISE, INFO )
398*
399*  -- LAPACK computational routine (version 3.7.1) --
400*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
401*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
402*     June 2017
403*
404*     .. Scalar Arguments ..
405      INTEGER            INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
406     $                   TRANS_TYPE, N_NORMS
407      LOGICAL            COLEQU, IGNORE_CWISE
408      INTEGER            ITHRESH
409      DOUBLE PRECISION   RTHRESH, DZ_UB
410*     ..
411*     .. Array Arguments
412      INTEGER            IPIV( * )
413      COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
414     $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
415      DOUBLE PRECISION   C( * ), AYB( * ), RCOND, BERR_OUT( * ),
416     $                   ERRS_N( NRHS, * ), ERRS_C( NRHS, * )
417*     ..
418*
419*  =====================================================================
420*
421*     .. Local Scalars ..
422      CHARACTER          TRANS
423      INTEGER            CNT, I, J,  X_STATE, Z_STATE, Y_PREC_STATE
424      DOUBLE PRECISION   YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
425     $                   DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
426     $                   DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
427     $                   EPS, HUGEVAL, INCR_THRESH
428      LOGICAL            INCR_PREC
429      COMPLEX*16         ZDUM
430*     ..
431*     .. Parameters ..
432      INTEGER            UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
433     $                   NOPROG_STATE, BASE_RESIDUAL, EXTRA_RESIDUAL,
434     $                   EXTRA_Y
435      PARAMETER          ( UNSTABLE_STATE = 0, WORKING_STATE = 1,
436     $                   CONV_STATE = 2,
437     $                   NOPROG_STATE = 3 )
438      PARAMETER          ( BASE_RESIDUAL = 0, EXTRA_RESIDUAL = 1,
439     $                   EXTRA_Y = 2 )
440      INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
441      INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
442      INTEGER            CMP_ERR_I, PIV_GROWTH_I
443      PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
444     $                   BERR_I = 3 )
445      PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
446      PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
447     $                   PIV_GROWTH_I = 9 )
448      INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
449     $                   LA_LINRX_CWISE_I
450      PARAMETER          ( LA_LINRX_ITREF_I = 1,
451     $                   LA_LINRX_ITHRESH_I = 2 )
452      PARAMETER          ( LA_LINRX_CWISE_I = 3 )
453      INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
454     $                   LA_LINRX_RCOND_I
455      PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
456      PARAMETER          ( LA_LINRX_RCOND_I = 3 )
457*     ..
458*     .. External Subroutines ..
459      EXTERNAL           ZAXPY, ZCOPY, ZGETRS, ZGEMV, BLAS_ZGEMV_X,
460     $                   BLAS_ZGEMV2_X, ZLA_GEAMV, ZLA_WWADDW, DLAMCH,
461     $                   CHLA_TRANSTYPE, ZLA_LIN_BERR
462      DOUBLE PRECISION   DLAMCH
463      CHARACTER          CHLA_TRANSTYPE
464*     ..
465*     .. Intrinsic Functions ..
466      INTRINSIC          ABS, MAX, MIN
467*     ..
468*     .. Statement Functions ..
469      DOUBLE PRECISION   CABS1
470*     ..
471*     .. Statement Function Definitions ..
472      CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
473*     ..
474*     .. Executable Statements ..
475*
476      IF ( INFO.NE.0 ) RETURN
477      TRANS = CHLA_TRANSTYPE(TRANS_TYPE)
478      EPS = DLAMCH( 'Epsilon' )
479      HUGEVAL = DLAMCH( 'Overflow' )
480*     Force HUGEVAL to Inf
481      HUGEVAL = HUGEVAL * HUGEVAL
482*     Using HUGEVAL may lead to spurious underflows.
483      INCR_THRESH = DBLE( N ) * EPS
484*
485      DO J = 1, NRHS
486         Y_PREC_STATE = EXTRA_RESIDUAL
487         IF ( Y_PREC_STATE .EQ. EXTRA_Y ) THEN
488            DO I = 1, N
489               Y_TAIL( I ) = 0.0D+0
490            END DO
491         END IF
492
493         DXRAT = 0.0D+0
494         DXRATMAX = 0.0D+0
495         DZRAT = 0.0D+0
496         DZRATMAX = 0.0D+0
497         FINAL_DX_X = HUGEVAL
498         FINAL_DZ_Z = HUGEVAL
499         PREVNORMDX = HUGEVAL
500         PREV_DZ_Z = HUGEVAL
501         DZ_Z = HUGEVAL
502         DX_X = HUGEVAL
503
504         X_STATE = WORKING_STATE
505         Z_STATE = UNSTABLE_STATE
506         INCR_PREC = .FALSE.
507
508         DO CNT = 1, ITHRESH
509*
510*         Compute residual RES = B_s - op(A_s) * Y,
511*             op(A) = A, A**T, or A**H depending on TRANS (and type).
512*
513            CALL ZCOPY( N, B( 1, J ), 1, RES, 1 )
514            IF ( Y_PREC_STATE .EQ. BASE_RESIDUAL ) THEN
515               CALL ZGEMV( TRANS, N, N, (-1.0D+0,0.0D+0), A, LDA,
516     $              Y( 1, J ), 1, (1.0D+0,0.0D+0), RES, 1)
517            ELSE IF (Y_PREC_STATE .EQ. EXTRA_RESIDUAL) THEN
518               CALL BLAS_ZGEMV_X( TRANS_TYPE, N, N, (-1.0D+0,0.0D+0), A,
519     $              LDA, Y( 1, J ), 1, (1.0D+0,0.0D+0),
520     $              RES, 1, PREC_TYPE )
521            ELSE
522               CALL BLAS_ZGEMV2_X( TRANS_TYPE, N, N, (-1.0D+0,0.0D+0),
523     $              A, LDA, Y(1, J), Y_TAIL, 1, (1.0D+0,0.0D+0), RES, 1,
524     $              PREC_TYPE)
525            END IF
526
527!         XXX: RES is no longer needed.
528            CALL ZCOPY( N, RES, 1, DY, 1 )
529            CALL ZGETRS( TRANS, N, 1, AF, LDAF, IPIV, DY, N, INFO )
530*
531*         Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
532*
533            NORMX = 0.0D+0
534            NORMY = 0.0D+0
535            NORMDX = 0.0D+0
536            DZ_Z = 0.0D+0
537            YMIN = HUGEVAL
538*
539            DO I = 1, N
540               YK = CABS1( Y( I, J ) )
541               DYK = CABS1( DY( I ) )
542
543               IF ( YK .NE. 0.0D+0 ) THEN
544                  DZ_Z = MAX( DZ_Z, DYK / YK )
545               ELSE IF ( DYK .NE. 0.0D+0 ) THEN
546                  DZ_Z = HUGEVAL
547               END IF
548
549               YMIN = MIN( YMIN, YK )
550
551               NORMY = MAX( NORMY, YK )
552
553               IF ( COLEQU ) THEN
554                  NORMX = MAX( NORMX, YK * C( I ) )
555                  NORMDX = MAX( NORMDX, DYK * C( I ) )
556               ELSE
557                  NORMX = NORMY
558                  NORMDX = MAX(NORMDX, DYK)
559               END IF
560            END DO
561
562            IF ( NORMX .NE. 0.0D+0 ) THEN
563               DX_X = NORMDX / NORMX
564            ELSE IF ( NORMDX .EQ. 0.0D+0 ) THEN
565               DX_X = 0.0D+0
566            ELSE
567               DX_X = HUGEVAL
568            END IF
569
570            DXRAT = NORMDX / PREVNORMDX
571            DZRAT = DZ_Z / PREV_DZ_Z
572*
573*         Check termination criteria
574*
575            IF (.NOT.IGNORE_CWISE
576     $           .AND. YMIN*RCOND .LT. INCR_THRESH*NORMY
577     $           .AND. Y_PREC_STATE .LT. EXTRA_Y )
578     $           INCR_PREC = .TRUE.
579
580            IF ( X_STATE .EQ. NOPROG_STATE .AND. DXRAT .LE. RTHRESH )
581     $           X_STATE = WORKING_STATE
582            IF ( X_STATE .EQ. WORKING_STATE ) THEN
583               IF (DX_X .LE. EPS) THEN
584                  X_STATE = CONV_STATE
585               ELSE IF ( DXRAT .GT. RTHRESH ) THEN
586                  IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
587                     INCR_PREC = .TRUE.
588                  ELSE
589                     X_STATE = NOPROG_STATE
590                  END IF
591               ELSE
592                  IF ( DXRAT .GT. DXRATMAX ) DXRATMAX = DXRAT
593               END IF
594               IF ( X_STATE .GT. WORKING_STATE ) FINAL_DX_X = DX_X
595            END IF
596
597            IF ( Z_STATE .EQ. UNSTABLE_STATE .AND. DZ_Z .LE. DZ_UB )
598     $           Z_STATE = WORKING_STATE
599            IF ( Z_STATE .EQ. NOPROG_STATE .AND. DZRAT .LE. RTHRESH )
600     $           Z_STATE = WORKING_STATE
601            IF ( Z_STATE .EQ. WORKING_STATE ) THEN
602               IF ( DZ_Z .LE. EPS ) THEN
603                  Z_STATE = CONV_STATE
604               ELSE IF ( DZ_Z .GT. DZ_UB ) THEN
605                  Z_STATE = UNSTABLE_STATE
606                  DZRATMAX = 0.0D+0
607                  FINAL_DZ_Z = HUGEVAL
608               ELSE IF ( DZRAT .GT. RTHRESH ) THEN
609                  IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
610                     INCR_PREC = .TRUE.
611                  ELSE
612                     Z_STATE = NOPROG_STATE
613                  END IF
614               ELSE
615                  IF ( DZRAT .GT. DZRATMAX ) DZRATMAX = DZRAT
616               END IF
617               IF ( Z_STATE .GT. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
618            END IF
619*
620*           Exit if both normwise and componentwise stopped working,
621*           but if componentwise is unstable, let it go at least two
622*           iterations.
623*
624            IF ( X_STATE.NE.WORKING_STATE ) THEN
625               IF ( IGNORE_CWISE ) GOTO 666
626               IF ( Z_STATE.EQ.NOPROG_STATE .OR. Z_STATE.EQ.CONV_STATE )
627     $              GOTO 666
628               IF ( Z_STATE.EQ.UNSTABLE_STATE .AND. CNT.GT.1 ) GOTO 666
629            END IF
630
631            IF ( INCR_PREC ) THEN
632               INCR_PREC = .FALSE.
633               Y_PREC_STATE = Y_PREC_STATE + 1
634               DO I = 1, N
635                  Y_TAIL( I ) = 0.0D+0
636               END DO
637            END IF
638
639            PREVNORMDX = NORMDX
640            PREV_DZ_Z = DZ_Z
641*
642*           Update soluton.
643*
644            IF ( Y_PREC_STATE .LT. EXTRA_Y ) THEN
645               CALL ZAXPY( N, (1.0D+0,0.0D+0), DY, 1, Y(1,J), 1 )
646            ELSE
647               CALL ZLA_WWADDW( N, Y( 1, J ), Y_TAIL, DY )
648            END IF
649
650         END DO
651*        Target of "IF (Z_STOP .AND. X_STOP)".  Sun's f77 won't EXIT.
652 666     CONTINUE
653*
654*     Set final_* when cnt hits ithresh
655*
656         IF ( X_STATE .EQ. WORKING_STATE ) FINAL_DX_X = DX_X
657         IF ( Z_STATE .EQ. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
658*
659*     Compute error bounds
660*
661         IF (N_NORMS .GE. 1) THEN
662            ERRS_N( J, LA_LINRX_ERR_I ) = FINAL_DX_X / (1 - DXRATMAX)
663
664         END IF
665         IF ( N_NORMS .GE. 2 ) THEN
666            ERRS_C( J, LA_LINRX_ERR_I ) = FINAL_DZ_Z / (1 - DZRATMAX)
667         END IF
668*
669*     Compute componentwise relative backward error from formula
670*         max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
671*     where abs(Z) is the componentwise absolute value of the matrix
672*     or vector Z.
673*
674*        Compute residual RES = B_s - op(A_s) * Y,
675*            op(A) = A, A**T, or A**H depending on TRANS (and type).
676*
677         CALL ZCOPY( N, B( 1, J ), 1, RES, 1 )
678         CALL ZGEMV( TRANS, N, N, (-1.0D+0,0.0D+0), A, LDA, Y(1,J), 1,
679     $        (1.0D+0,0.0D+0), RES, 1 )
680
681         DO I = 1, N
682            AYB( I ) = CABS1( B( I, J ) )
683         END DO
684*
685*     Compute abs(op(A_s))*abs(Y) + abs(B_s).
686*
687         CALL ZLA_GEAMV ( TRANS_TYPE, N, N, 1.0D+0,
688     $        A, LDA, Y(1, J), 1, 1.0D+0, AYB, 1 )
689
690         CALL ZLA_LIN_BERR ( N, N, 1, RES, AYB, BERR_OUT( J ) )
691*
692*     End of loop for each RHS.
693*
694      END DO
695*
696      RETURN
697      END
698