1*> \brief \b ZLAVSP
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*  Definition:
9*  ===========
10*
11*       SUBROUTINE ZLAVSP( UPLO, TRANS, DIAG, N, NRHS, A, IPIV, B, LDB,
12*                          INFO )
13*
14*       .. Scalar Arguments ..
15*       CHARACTER          DIAG, TRANS, UPLO
16*       INTEGER            INFO, LDB, N, NRHS
17*       ..
18*       .. Array Arguments ..
19*       INTEGER            IPIV( * )
20*       COMPLEX*16         A( * ), B( LDB, * )
21*       ..
22*
23*
24*> \par Purpose:
25*  =============
26*>
27*> \verbatim
28*>
29*>    ZLAVSP  performs one of the matrix-vector operations
30*>       x := A*x  or  x := A^T*x,
31*>    where x is an N element vector and  A is one of the factors
32*>    from the symmetric factorization computed by ZSPTRF.
33*>    ZSPTRF produces a factorization of the form
34*>         U * D * U^T     or     L * D * L^T,
35*>    where U (or L) is a product of permutation and unit upper (lower)
36*>    triangular matrices, U^T (or L^T) is the transpose of
37*>    U (or L), and D is symmetric and block diagonal with 1 x 1 and
38*>    2 x 2 diagonal blocks.  The multipliers for the transformations
39*>    and the upper or lower triangular parts of the diagonal blocks
40*>    are stored columnwise in packed format in the linear array A.
41*>
42*>    If TRANS = 'N' or 'n', ZLAVSP multiplies either by U or U * D
43*>    (or L or L * D).
44*>    If TRANS = 'C' or 'c', ZLAVSP multiplies either by U^T or D * U^T
45*>    (or L^T or D * L^T ).
46*> \endverbatim
47*
48*  Arguments:
49*  ==========
50*
51*> \verbatim
52*>  UPLO   - CHARACTER*1
53*>           On entry, UPLO specifies whether the triangular matrix
54*>           stored in A is upper or lower triangular.
55*>              UPLO = 'U' or 'u'   The matrix is upper triangular.
56*>              UPLO = 'L' or 'l'   The matrix is lower triangular.
57*>           Unchanged on exit.
58*>
59*>  TRANS  - CHARACTER*1
60*>           On entry, TRANS specifies the operation to be performed as
61*>           follows:
62*>              TRANS = 'N' or 'n'   x := A*x.
63*>              TRANS = 'T' or 't'   x := A^T*x.
64*>           Unchanged on exit.
65*>
66*>  DIAG   - CHARACTER*1
67*>           On entry, DIAG specifies whether the diagonal blocks are
68*>           assumed to be unit matrices, as follows:
69*>              DIAG = 'U' or 'u'   Diagonal blocks are unit matrices.
70*>              DIAG = 'N' or 'n'   Diagonal blocks are non-unit.
71*>           Unchanged on exit.
72*>
73*>  N      - INTEGER
74*>           On entry, N specifies the order of the matrix A.
75*>           N must be at least zero.
76*>           Unchanged on exit.
77*>
78*>  NRHS   - INTEGER
79*>           On entry, NRHS specifies the number of right hand sides,
80*>           i.e., the number of vectors x to be multiplied by A.
81*>           NRHS must be at least zero.
82*>           Unchanged on exit.
83*>
84*>  A      - COMPLEX*16 array, dimension( N*(N+1)/2 )
85*>           On entry, A contains a block diagonal matrix and the
86*>           multipliers of the transformations used to obtain it,
87*>           stored as a packed triangular matrix.
88*>           Unchanged on exit.
89*>
90*>  IPIV   - INTEGER array, dimension( N )
91*>           On entry, IPIV contains the vector of pivot indices as
92*>           determined by ZSPTRF.
93*>           If IPIV( K ) = K, no interchange was done.
94*>           If IPIV( K ) <> K but IPIV( K ) > 0, then row K was inter-
95*>           changed with row IPIV( K ) and a 1 x 1 pivot block was used.
96*>           If IPIV( K ) < 0 and UPLO = 'U', then row K-1 was exchanged
97*>           with row | IPIV( K ) | and a 2 x 2 pivot block was used.
98*>           If IPIV( K ) < 0 and UPLO = 'L', then row K+1 was exchanged
99*>           with row | IPIV( K ) | and a 2 x 2 pivot block was used.
100*>
101*>  B      - COMPLEX*16 array, dimension( LDB, NRHS )
102*>           On entry, B contains NRHS vectors of length N.
103*>           On exit, B is overwritten with the product A * B.
104*>
105*>  LDB    - INTEGER
106*>           On entry, LDB contains the leading dimension of B as
107*>           declared in the calling program.  LDB must be at least
108*>           max( 1, N ).
109*>           Unchanged on exit.
110*>
111*>  INFO   - INTEGER
112*>           INFO is the error flag.
113*>           On exit, a value of 0 indicates a successful exit.
114*>           A negative value, say -K, indicates that the K-th argument
115*>           has an illegal value.
116*> \endverbatim
117*
118*  Authors:
119*  ========
120*
121*> \author Univ. of Tennessee
122*> \author Univ. of California Berkeley
123*> \author Univ. of Colorado Denver
124*> \author NAG Ltd.
125*
126*> \date December 2016
127*
128*> \ingroup complex16_lin
129*
130*  =====================================================================
131      SUBROUTINE ZLAVSP( UPLO, TRANS, DIAG, N, NRHS, A, IPIV, B, LDB,
132     $                   INFO )
133*
134*  -- LAPACK test routine (version 3.7.0) --
135*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
136*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
137*     December 2016
138*
139*     .. Scalar Arguments ..
140      CHARACTER          DIAG, TRANS, UPLO
141      INTEGER            INFO, LDB, N, NRHS
142*     ..
143*     .. Array Arguments ..
144      INTEGER            IPIV( * )
145      COMPLEX*16         A( * ), B( LDB, * )
146*     ..
147*
148*  =====================================================================
149*
150*     .. Parameters ..
151      COMPLEX*16         ONE
152      PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
153*     ..
154*     .. Local Scalars ..
155      LOGICAL            NOUNIT
156      INTEGER            J, K, KC, KCNEXT, KP
157      COMPLEX*16         D11, D12, D21, D22, T1, T2
158*     ..
159*     .. External Functions ..
160      LOGICAL            LSAME
161      EXTERNAL           LSAME
162*     ..
163*     .. External Subroutines ..
164      EXTERNAL           XERBLA, ZGEMV, ZGERU, ZSCAL, ZSWAP
165*     ..
166*     .. Intrinsic Functions ..
167      INTRINSIC          ABS, MAX
168*     ..
169*     .. Executable Statements ..
170*
171*     Test the input parameters.
172*
173      INFO = 0
174      IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
175         INFO = -1
176      ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.LSAME( TRANS, 'T' ) )
177     $          THEN
178         INFO = -2
179      ELSE IF( .NOT.LSAME( DIAG, 'U' ) .AND. .NOT.LSAME( DIAG, 'N' ) )
180     $          THEN
181         INFO = -3
182      ELSE IF( N.LT.0 ) THEN
183         INFO = -4
184      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
185         INFO = -8
186      END IF
187      IF( INFO.NE.0 ) THEN
188         CALL XERBLA( 'ZLAVSP ', -INFO )
189         RETURN
190      END IF
191*
192*     Quick return if possible.
193*
194      IF( N.EQ.0 )
195     $   RETURN
196*
197      NOUNIT = LSAME( DIAG, 'N' )
198*------------------------------------------
199*
200*     Compute  B := A * B  (No transpose)
201*
202*------------------------------------------
203      IF( LSAME( TRANS, 'N' ) ) THEN
204*
205*        Compute  B := U*B
206*        where U = P(m)*inv(U(m))* ... *P(1)*inv(U(1))
207*
208         IF( LSAME( UPLO, 'U' ) ) THEN
209*
210*        Loop forward applying the transformations.
211*
212            K = 1
213            KC = 1
214   10       CONTINUE
215            IF( K.GT.N )
216     $         GO TO 30
217*
218*           1 x 1 pivot block
219*
220            IF( IPIV( K ).GT.0 ) THEN
221*
222*              Multiply by the diagonal element if forming U * D.
223*
224               IF( NOUNIT )
225     $            CALL ZSCAL( NRHS, A( KC+K-1 ), B( K, 1 ), LDB )
226*
227*              Multiply by P(K) * inv(U(K))  if K > 1.
228*
229               IF( K.GT.1 ) THEN
230*
231*                 Apply the transformation.
232*
233                  CALL ZGERU( K-1, NRHS, ONE, A( KC ), 1, B( K, 1 ),
234     $                        LDB, B( 1, 1 ), LDB )
235*
236*                 Interchange if P(K) != I.
237*
238                  KP = IPIV( K )
239                  IF( KP.NE.K )
240     $               CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
241               END IF
242               KC = KC + K
243               K = K + 1
244            ELSE
245*
246*              2 x 2 pivot block
247*
248               KCNEXT = KC + K
249*
250*              Multiply by the diagonal block if forming U * D.
251*
252               IF( NOUNIT ) THEN
253                  D11 = A( KCNEXT-1 )
254                  D22 = A( KCNEXT+K )
255                  D12 = A( KCNEXT+K-1 )
256                  D21 = D12
257                  DO 20 J = 1, NRHS
258                     T1 = B( K, J )
259                     T2 = B( K+1, J )
260                     B( K, J ) = D11*T1 + D12*T2
261                     B( K+1, J ) = D21*T1 + D22*T2
262   20             CONTINUE
263               END IF
264*
265*              Multiply by  P(K) * inv(U(K))  if K > 1.
266*
267               IF( K.GT.1 ) THEN
268*
269*                 Apply the transformations.
270*
271                  CALL ZGERU( K-1, NRHS, ONE, A( KC ), 1, B( K, 1 ),
272     $                        LDB, B( 1, 1 ), LDB )
273                  CALL ZGERU( K-1, NRHS, ONE, A( KCNEXT ), 1,
274     $                        B( K+1, 1 ), LDB, B( 1, 1 ), LDB )
275*
276*                 Interchange if P(K) != I.
277*
278                  KP = ABS( IPIV( K ) )
279                  IF( KP.NE.K )
280     $               CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
281               END IF
282               KC = KCNEXT + K + 1
283               K = K + 2
284            END IF
285            GO TO 10
286   30       CONTINUE
287*
288*        Compute  B := L*B
289*        where L = P(1)*inv(L(1))* ... *P(m)*inv(L(m)) .
290*
291         ELSE
292*
293*           Loop backward applying the transformations to B.
294*
295            K = N
296            KC = N*( N+1 ) / 2 + 1
297   40       CONTINUE
298            IF( K.LT.1 )
299     $         GO TO 60
300            KC = KC - ( N-K+1 )
301*
302*           Test the pivot index.  If greater than zero, a 1 x 1
303*           pivot was used, otherwise a 2 x 2 pivot was used.
304*
305            IF( IPIV( K ).GT.0 ) THEN
306*
307*              1 x 1 pivot block:
308*
309*              Multiply by the diagonal element if forming L * D.
310*
311               IF( NOUNIT )
312     $            CALL ZSCAL( NRHS, A( KC ), B( K, 1 ), LDB )
313*
314*              Multiply by  P(K) * inv(L(K))  if K < N.
315*
316               IF( K.NE.N ) THEN
317                  KP = IPIV( K )
318*
319*                 Apply the transformation.
320*
321                  CALL ZGERU( N-K, NRHS, ONE, A( KC+1 ), 1, B( K, 1 ),
322     $                        LDB, B( K+1, 1 ), LDB )
323*
324*                 Interchange if a permutation was applied at the
325*                 K-th step of the factorization.
326*
327                  IF( KP.NE.K )
328     $               CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
329               END IF
330               K = K - 1
331*
332            ELSE
333*
334*              2 x 2 pivot block:
335*
336               KCNEXT = KC - ( N-K+2 )
337*
338*              Multiply by the diagonal block if forming L * D.
339*
340               IF( NOUNIT ) THEN
341                  D11 = A( KCNEXT )
342                  D22 = A( KC )
343                  D21 = A( KCNEXT+1 )
344                  D12 = D21
345                  DO 50 J = 1, NRHS
346                     T1 = B( K-1, J )
347                     T2 = B( K, J )
348                     B( K-1, J ) = D11*T1 + D12*T2
349                     B( K, J ) = D21*T1 + D22*T2
350   50             CONTINUE
351               END IF
352*
353*              Multiply by  P(K) * inv(L(K))  if K < N.
354*
355               IF( K.NE.N ) THEN
356*
357*                 Apply the transformation.
358*
359                  CALL ZGERU( N-K, NRHS, ONE, A( KC+1 ), 1, B( K, 1 ),
360     $                        LDB, B( K+1, 1 ), LDB )
361                  CALL ZGERU( N-K, NRHS, ONE, A( KCNEXT+2 ), 1,
362     $                        B( K-1, 1 ), LDB, B( K+1, 1 ), LDB )
363*
364*                 Interchange if a permutation was applied at the
365*                 K-th step of the factorization.
366*
367                  KP = ABS( IPIV( K ) )
368                  IF( KP.NE.K )
369     $               CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
370               END IF
371               KC = KCNEXT
372               K = K - 2
373            END IF
374            GO TO 40
375   60       CONTINUE
376         END IF
377*-------------------------------------------------
378*
379*     Compute  B := A^T * B  (transpose)
380*
381*-------------------------------------------------
382      ELSE
383*
384*        Form  B := U^T*B
385*        where U  = P(m)*inv(U(m))* ... *P(1)*inv(U(1))
386*        and   U^T = inv(U^T(1))*P(1)* ... *inv(U^T(m))*P(m)
387*
388         IF( LSAME( UPLO, 'U' ) ) THEN
389*
390*           Loop backward applying the transformations.
391*
392            K = N
393            KC = N*( N+1 ) / 2 + 1
394   70       CONTINUE
395            IF( K.LT.1 )
396     $         GO TO 90
397            KC = KC - K
398*
399*           1 x 1 pivot block.
400*
401            IF( IPIV( K ).GT.0 ) THEN
402               IF( K.GT.1 ) THEN
403*
404*                 Interchange if P(K) != I.
405*
406                  KP = IPIV( K )
407                  IF( KP.NE.K )
408     $               CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
409*
410*                 Apply the transformation:
411*                    y := y - B' * conjg(x)
412*                 where x is a column of A and y is a row of B.
413*
414                  CALL ZGEMV( 'Transpose', K-1, NRHS, ONE, B, LDB,
415     $                        A( KC ), 1, ONE, B( K, 1 ), LDB )
416               END IF
417               IF( NOUNIT )
418     $            CALL ZSCAL( NRHS, A( KC+K-1 ), B( K, 1 ), LDB )
419               K = K - 1
420*
421*           2 x 2 pivot block.
422*
423            ELSE
424               KCNEXT = KC - ( K-1 )
425               IF( K.GT.2 ) THEN
426*
427*                 Interchange if P(K) != I.
428*
429                  KP = ABS( IPIV( K ) )
430                  IF( KP.NE.K-1 )
431     $               CALL ZSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ),
432     $                           LDB )
433*
434*                 Apply the transformations.
435*
436                  CALL ZGEMV( 'Transpose', K-2, NRHS, ONE, B, LDB,
437     $                        A( KC ), 1, ONE, B( K, 1 ), LDB )
438*
439                  CALL ZGEMV( 'Transpose', K-2, NRHS, ONE, B, LDB,
440     $                        A( KCNEXT ), 1, ONE, B( K-1, 1 ), LDB )
441               END IF
442*
443*              Multiply by the diagonal block if non-unit.
444*
445               IF( NOUNIT ) THEN
446                  D11 = A( KC-1 )
447                  D22 = A( KC+K-1 )
448                  D12 = A( KC+K-2 )
449                  D21 = D12
450                  DO 80 J = 1, NRHS
451                     T1 = B( K-1, J )
452                     T2 = B( K, J )
453                     B( K-1, J ) = D11*T1 + D12*T2
454                     B( K, J ) = D21*T1 + D22*T2
455   80             CONTINUE
456               END IF
457               KC = KCNEXT
458               K = K - 2
459            END IF
460            GO TO 70
461   90       CONTINUE
462*
463*        Form  B := L^T*B
464*        where L  = P(1)*inv(L(1))* ... *P(m)*inv(L(m))
465*        and   L^T = inv(L(m))*P(m)* ... *inv(L(1))*P(1)
466*
467         ELSE
468*
469*           Loop forward applying the L-transformations.
470*
471            K = 1
472            KC = 1
473  100       CONTINUE
474            IF( K.GT.N )
475     $         GO TO 120
476*
477*           1 x 1 pivot block
478*
479            IF( IPIV( K ).GT.0 ) THEN
480               IF( K.LT.N ) THEN
481*
482*                 Interchange if P(K) != I.
483*
484                  KP = IPIV( K )
485                  IF( KP.NE.K )
486     $               CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
487*
488*                 Apply the transformation
489*
490                  CALL ZGEMV( 'Transpose', N-K, NRHS, ONE, B( K+1, 1 ),
491     $                        LDB, A( KC+1 ), 1, ONE, B( K, 1 ), LDB )
492               END IF
493               IF( NOUNIT )
494     $            CALL ZSCAL( NRHS, A( KC ), B( K, 1 ), LDB )
495               KC = KC + N - K + 1
496               K = K + 1
497*
498*           2 x 2 pivot block.
499*
500            ELSE
501               KCNEXT = KC + N - K + 1
502               IF( K.LT.N-1 ) THEN
503*
504*              Interchange if P(K) != I.
505*
506                  KP = ABS( IPIV( K ) )
507                  IF( KP.NE.K+1 )
508     $               CALL ZSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ),
509     $                           LDB )
510*
511*                 Apply the transformation
512*
513                  CALL ZGEMV( 'Transpose', N-K-1, NRHS, ONE,
514     $                        B( K+2, 1 ), LDB, A( KCNEXT+1 ), 1, ONE,
515     $                        B( K+1, 1 ), LDB )
516*
517                  CALL ZGEMV( 'Transpose', N-K-1, NRHS, ONE,
518     $                        B( K+2, 1 ), LDB, A( KC+2 ), 1, ONE,
519     $                        B( K, 1 ), LDB )
520               END IF
521*
522*              Multiply by the diagonal block if non-unit.
523*
524               IF( NOUNIT ) THEN
525                  D11 = A( KC )
526                  D22 = A( KCNEXT )
527                  D21 = A( KC+1 )
528                  D12 = D21
529                  DO 110 J = 1, NRHS
530                     T1 = B( K, J )
531                     T2 = B( K+1, J )
532                     B( K, J ) = D11*T1 + D12*T2
533                     B( K+1, J ) = D21*T1 + D22*T2
534  110             CONTINUE
535               END IF
536               KC = KCNEXT + ( N-K )
537               K = K + 2
538            END IF
539            GO TO 100
540  120       CONTINUE
541         END IF
542*
543      END IF
544      RETURN
545*
546*     End of ZLAVSP
547*
548      END
549