1%feature("docstring") OT::Chi 2":math:`\chi` distribution. 3 4Available constructors: 5 Chi(*nu=1.0*) 6 7Parameters 8---------- 9nu : float, :math:`\nu > 0` 10 Degrees of freedom. 11 12Notes 13----- 14Its probability density function is defined as: 15 16.. math:: 17 18 f_X(x) = \frac{2^{1 - \nu / 2} x^{\nu - 1} \exp(- x^2 / 2)} 19 {\Gamma(\nu / 2)}, \quad x \in \Rset^{+*} 20 21with :math:`\nu > 0`. 22 23Its first moments are: 24 25.. math:: 26 :nowrap: 27 28 \begin{eqnarray*} 29 \Expect{X} & = & \sqrt{2}\,\frac{\Gamma((\nu + 1) / 2)} 30 {\Gamma(\nu / 2)} \\ 31 \Var{X} & = & \nu - \mu^2 32 \end{eqnarray*} 33 34Examples 35-------- 36Create a distribution: 37 38>>> import openturns as ot 39>>> distribution = ot.Chi(2.0) 40 41Draw a sample: 42 43>>> sample = distribution.getSample(5)" 44 45// --------------------------------------------------------------------- 46 47%feature("docstring") OT::Chi::getNu 48"Accessor to the degrees of freedom parameter. 49 50Returns 51------- 52nu : float 53 Degrees of freedom." 54 55// --------------------------------------------------------------------- 56 57%feature("docstring") OT::Chi::setNu 58"Accessor to the degrees of freedom parameter. 59 60Parameters 61---------- 62nu : float, :math:`\nu > 0` 63 Degrees of freedom." 64