1%feature("docstring") OT::Chi
2":math:`\chi` distribution.
3
4Available constructors:
5    Chi(*nu=1.0*)
6
7Parameters
8----------
9nu : float, :math:`\nu > 0`
10    Degrees of freedom.
11
12Notes
13-----
14Its probability density function is defined as:
15
16.. math::
17
18    f_X(x) = \frac{2^{1 - \nu / 2} x^{\nu - 1} \exp(- x^2 / 2)}
19                  {\Gamma(\nu / 2)}, \quad x \in \Rset^{+*}
20
21with :math:`\nu > 0`.
22
23Its first moments are:
24
25.. math::
26    :nowrap:
27
28    \begin{eqnarray*}
29        \Expect{X} & = & \sqrt{2}\,\frac{\Gamma((\nu + 1) / 2)}
30                                        {\Gamma(\nu / 2)} \\
31        \Var{X} & = & \nu - \mu^2
32    \end{eqnarray*}
33
34Examples
35--------
36Create a distribution:
37
38>>> import openturns as ot
39>>> distribution = ot.Chi(2.0)
40
41Draw a sample:
42
43>>> sample = distribution.getSample(5)"
44
45// ---------------------------------------------------------------------
46
47%feature("docstring") OT::Chi::getNu
48"Accessor to the degrees of freedom parameter.
49
50Returns
51-------
52nu : float
53    Degrees of freedom."
54
55// ---------------------------------------------------------------------
56
57%feature("docstring") OT::Chi::setNu
58"Accessor to the degrees of freedom parameter.
59
60Parameters
61----------
62nu : float, :math:`\nu > 0`
63    Degrees of freedom."
64