1%feature("docstring") OT::InverseTrendTransform 2"Inverse Trend transformation. 3 4Parameters 5---------- 6myInverseTrendFunc : :class:`~openturns.Function` 7 The inverse trend function :math:`f_{trend}^{-1}`. 8 9 10Notes 11----- 12A multivariate stochastic process :math:`X: \Omega \times\cD \rightarrow \Rset^d` of dimension *d* where :math:`\cD \in \Rset^n` may write as the sum of a trend function :math:`f_{trend}: \Rset^n \rightarrow \Rset^d` and a stationary multivariate stochastic process :math:`X_{stat}: \Omega \times\cD \rightarrow \Rset^d` of dimension *d* as follows: 13 14.. math:: 15 16 X(\omega,\vect{t}) = X_{stat}(\omega,\vect{t}) + f_{trend}(\vect{t}) 17 18 19We note :math:`(\vect{x}_0, \dots, \vect{x}_{N-1})` the values of one field of the process *X*, associated to the mesh :math:`\cM = (\vect{t}_0, \dots, \vect{t}_{N-1})` of :math:`\cD`. We note :math:`(\vect{x}^{stat}_0, \dots, \vect{x}^{stat}_{N-1})` the values of the resulting stationary field. Then we have: 20 21.. math:: 22 23 \vect{x}^{stat}_i = \vect{x}_i - f_{trend}(\vect{t}_i) 24 25The inverse trend transformation enables to get the :math:`X_{stat}` process or to get the :math:`(\vect{x}^{stat}_0, \dots, \vect{x}^{stat}_{N-1})` field. 26 27 28Examples 29-------- 30Create a trend function: :math:`f_{trend} : \Rset \mapsto \Rset` where :math:`f_{trend}(t,s)=-(1+2t+t^2)`: 31 32>>> import openturns as ot 33>>> h = ot.SymbolicFunction(['t'], ['-(1+2*t+t^2)']) 34>>> mesh = ot.RegularGrid(0.0, 0.1, 11) 35>>> fTrendInv = ot.InverseTrendTransform(h, mesh) 36 37" 38 39// --------------------------------------------------------------------- 40%feature("docstring") OT::InverseTrendTransform::getInverse 41"Accessor to the trend function. 42 43Returns 44------- 45myTrendTransform : :class:`~openturns.TrendTransform` 46 The :math:`f_{trend}` function. 47 48" 49