1%feature("docstring") OT::LaguerreFactory 2"Laguerre specific orthonormal univariate polynomial family. 3 4For the :class:`~openturns.Gamma` distribution. 5 6Available constructors: 7 LaguerreFactory(*k=1.0, ot.LaguerreFactory.ANALYSIS*) 8 9Parameters 10---------- 11k : float 12 If `parameters_set == ot.JacobiFactory.PROBABILITY`: default shape 13 parameter :math:`k > 0` of the :class:`~openturns.Gamma` distribution. 14 15 If `parameters_set == ot.JacobiFactory.ANALYSIS`: alternative shape 16 parameter :math:`k_a = k - 1 > -1` of the :class:`~openturns.Gamma` 17 distribution. 18parameters_set : int, optional 19 Integer telling which parameters set is used for defining the distribution 20 (amongst `ot.LaguerreFactory.ANALYSIS, ot.LaguerreFactory.PROBABILITY`). 21 22Notes 23----- 24Any sequence of orthogonal polynomials has a recurrence formula relating any 25three consecutive polynomials as follows: 26 27.. math:: 28 29 P_{i + 1} = (a_i x + b_i) P_i + c_i P_{i - 1}, \quad 1 < i 30 31The recurrence coefficients for the Laguerre polynomials come analytically and 32read: 33 34.. math:: 35 36 \begin{array}{rcl} 37 a_i & = & \omega_i \\ 38 b_i & = & - (2 i + k_a + 1) \omega_i \\ 39 c_i & = & - \sqrt{(i + k_a) i} \omega_i 40 \end{array}, \quad 1 < i 41 42where :math:`k_a` is the alternative shape parameter of the 43:class:`~openturns.Gamma` distribution, and: 44 45.. math:: 46 47 \omega_i = \frac{1}{\sqrt{(i + 1) (i + k_a + 1)}} , \quad 1 < i 48 49See also 50-------- 51StandardDistributionPolynomialFactory 52 53Examples 54-------- 55>>> import openturns as ot 56>>> polynomial_factory = ot.LaguerreFactory() 57>>> for i in range(3): 58... print(polynomial_factory.build(i)) 591 60-1 + X 611 - 2 * X + 0.5 * X^2" 62 63// --------------------------------------------------------------------- 64 65%feature("docstring") OT::LaguerreFactory::getK 66"Accessor to the alternative shape parameter :math:`k_a`. 67 68Of the :class:`~openturns.Gamma` distribution. 69 70Returns 71------- 72k_a : float 73 Alternative shape parameter :math:`k_a = k - 1` of the 74 :class:`~openturns.Gamma` distribution." 75