1%feature("docstring") OT::NegativeBinomial
2"NegativeBinomial distribution.
3
4Available constructors:
5    NegativeBinomial(*r=1.0, p=0.5*)
6
7Parameters
8----------
9r : float, :math:`r > 0`
10    Number of failures until the Bernoulli trial is stopped.
11
12p : float, :math:`0 < p < 1`
13    Success probability of the Bernoulli trial.
14
15Notes
16-----
17Its probability density function is defined as:
18
19.. math::
20
21    \Prob{X = k} = \frac{\Gamma(k + r)}{\Gamma(r)\Gamma(k+1)}p^k(1-p)^r,
22                   \, \forall k \in \Nset
23
24Its first moments are:
25
26.. math::
27    :nowrap:
28
29    \begin{eqnarray*}
30        \Expect{X} & = & \frac{rp}{1-p} \\
31        \Var{X} & = & \frac{rp}{(1-p)^2}
32    \end{eqnarray*}
33
34Examples
35--------
36Create a distribution:
37
38>>> import openturns as ot
39>>> distribution = ot.NegativeBinomial(1.0, 0.6)
40
41Draw a sample:
42
43>>> sample = distribution.getSample(5)"
44
45// ---------------------------------------------------------------------
46
47%feature("docstring") OT::NegativeBinomial::getP
48"Accessor to the success probability parameter.
49
50Returns
51-------
52p : float
53    The success probability of the Bernoulli trial."
54
55// ---------------------------------------------------------------------
56
57%feature("docstring") OT::NegativeBinomial::getR
58"Accessor to the number of failures parameter.
59
60Returns
61-------
62r : float
63    Number of failures until the Bernoulli trial is stopped."
64
65// ---------------------------------------------------------------------
66
67%feature("docstring") OT::NegativeBinomial::setP
68"Accessor to the success probability parameter.
69
70Parameters
71----------
72p : float, :math:`0 \leq p \leq 1`
73    The success probability of the Bernoulli trial."
74
75// ---------------------------------------------------------------------
76
77%feature("docstring") OT::NegativeBinomial::setR
78"Accessor to the number of failures parameter.
79
80Parameters
81----------
82r : float, :math:`r > 0`
83    Number of failures until the Bernoulli trial is stopped."
84