1%feature("docstring") OT::Wilks 2"Class to evaluate the Wilks number. 3 4Refer to :ref:`quantile_estimation_wilks`. 5 6Parameters 7---------- 8randomVector : :class:`~openturns.RandomVector` of dimension 1 9 Output variable of interest. 10 11Notes 12----- 13This class is a static class which enables the evaluation of the Wilks number: 14the minimal sample size :math:`N_{\alpha, \beta, i}` to perform in order to 15guarantee that the empirical quantile :math:`\alpha`, noted 16:math:`\tilde{q}_{\alpha} N_{\alpha, \beta, i}` evaluated with the 17:math:`(n - i)^{th}` maximum of the sample, noted :math:`X_{n - i}` be greater 18than the theoretical quantile :math:`q_{\alpha}` with a probability at least 19:math:`\beta`: 20 21.. math:: 22 23 \Pset (\tilde{q}_{\alpha} N_{\alpha, \beta, i} > q_{\alpha}) > \beta 24 25where :math:`\tilde{q}_{\alpha} N_{\alpha, \beta, i} = X_{n-i}`." 26 27// --------------------------------------------------------------------- 28 29%feature("docstring") OT::Wilks::ComputeSampleSize 30"Evaluate the size of the sample. 31 32Parameters 33---------- 34alpha : positive float :math:`< 1` 35 The order of the quantile we want to evaluate. 36beta : positive float :math:`< 1` 37 Confidence on the evaluation of the empirical quantile. 38i : int 39 Rank of the maximum which will evaluate the empirical quantile. Default 40 :math:`i = 0` (maximum of the sample) 41 42Returns 43------- 44w : int 45 the Wilks number." 46 47// --------------------------------------------------------------------- 48 49%feature("docstring") OT::Wilks::computeQuantileBound 50"Evaluate the bound of the quantile. 51 52Parameters 53---------- 54alpha : positive float :math:`< 1` 55 The order of the quantile we want to evaluate. 56beta : positive float :math:`< 1` 57 Confidence on the evaluation of the empirical quantile. 58i : int 59 Rank of the maximum which will evaluate the empirical quantile. Default 60 :math:`i = 0` (maximum of the sample) 61 62Returns 63------- 64q : :class:`~openturns.Point` 65 The estimate of the quantile upper bound for the given quantile level, at 66 the given confidence level and using the given upper statistics." 67