1 // Polygon pattern fill.
2 //
3 // Copyright (C) 2004-2015 Alan W. Irwin
4 // Copyright (C) 2005, 2006, 2007, 2008, 2009 Arjen Markus
5 //
6 // This file is part of PLplot.
7 //
8 // PLplot is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU Library General Public License as published
10 // by the Free Software Foundation; either version 2 of the License, or
11 // (at your option) any later version.
12 //
13 // PLplot is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU Library General Public License for more details.
17 //
18 // You should have received a copy of the GNU Library General Public License
19 // along with PLplot; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 //
22 //
23
24 #include "plplotP.h"
25
26 #define INSIDE( ix, iy ) ( BETW( ix, xmin, xmax ) && BETW( iy, ymin, ymax ) )
27
28 #define DTOR ( PI / 180. )
29 #define BINC 50
30 // Near-border comparison criterion (NBCC).
31 #define PL_NBCC 2
32 // Variant of BETW that returns true if between or within PL_NBCC of it.
33 #define BETW_NBCC( ix, ia, ib ) ( ( ( ix ) <= ( ia + PL_NBCC ) && ( ix ) >= ( ib - PL_NBCC ) ) || ( ( ix ) >= ( ia - PL_NBCC ) && ( ix ) <= ( ib + PL_NBCC ) ) )
34
35 // Status codes ORed together in the return from notcrossed.
36 // PL_NOT_CROSSED is set whenever the two line segments definitely
37 // (i.e., intersection not near the ends or completely apart)
38 // do not cross each other.
39 //
40 // PL_NEAR_A1 is set if the intersect is near (+/- PL_NBCC) the first
41 // end of line segment A.
42 //
43 // PL_NEAR_A2 is set if the intersect is near (+/- PL_NBCC) the second
44 // end of line segment A.
45 //
46 // PL_NEAR_B1 is set if the intersect is near (+/- PL_NBCC) the first
47 // end of line segment B.
48 //
49 // PL_NEAR_B2 is set if the intersect is near (+/- PL_NBCC) the second
50 // end of line segment B.
51 //
52 // PL_NEAR_PARALLEL is set if the two line segments are nearly parallel
53 // with each other, i.e., a change in one of the coordinates of up to
54 // (+/- PL_NBCC) would render them exactly parallel.
55 //
56 // PL_PARALLEL is set if the two line segments are exactly parallel
57 // with each other.
58 //
59 enum PL_CrossedStatus
60 {
61 PL_NOT_CROSSED = 0x1,
62 PL_NEAR_A1 = 0x2,
63 PL_NEAR_A2 = 0x4,
64 PL_NEAR_B1 = 0x8,
65 PL_NEAR_B2 = 0x10,
66 PL_NEAR_PARALLEL = 0x20,
67 PL_PARALLEL = 0x40
68 };
69
70 struct point
71 {
72 PLINT x, y;
73 };
74 static PLINT bufferleng, buffersize, *buffer;
75
76 // Static function prototypes
77
78 static int
79 compar( const void *, const void * );
80
81 static void
82 addcoord( PLINT, PLINT );
83
84 static void
85 tran( PLINT *, PLINT *, PLFLT, PLFLT );
86
87 static void
88 buildlist( PLINT, PLINT, PLINT, PLINT, PLINT, PLINT, PLINT );
89
90 static int
91 notpointinpolygon( PLINT n, PLINT_VECTOR x, PLINT_VECTOR y, PLINT xp, PLINT yp );
92
93 static int
94 circulation( PLINT *x, PLINT *y, PLINT npts );
95
96 #ifdef USE_FILL_INTERSECTION_POLYGON
97 static void
98 fill_intersection_polygon( PLINT recursion_depth, PLINT ifextrapolygon,
99 PLINT fill_status,
100 void ( *fill )( short *, short *, PLINT ),
101 PLINT_VECTOR x1, PLINT_VECTOR y1,
102 PLINT i1start, PLINT n1,
103 PLINT_VECTOR x2, PLINT_VECTOR y2,
104 PLINT_VECTOR if2, PLINT n2 );
105
106 static int
107 positive_orientation( PLINT n, PLINT_VECTOR x, PLINT_VECTOR y );
108
109 static int
110 number_crossings( PLINT *xcross, PLINT *ycross, PLINT *i2cross, PLINT ncross,
111 PLINT i1, PLINT n1, PLINT_VECTOR x1, PLINT_VECTOR y1,
112 PLINT n2, PLINT_VECTOR x2, PLINT_VECTOR y2 );
113 #endif
114
115 static int
116 notcrossed( PLINT *xintersect, PLINT *yintersect,
117 PLINT xA1, PLINT yA1, PLINT xA2, PLINT yA2,
118 PLINT xB1, PLINT yB1, PLINT xB2, PLINT yB2 );
119
120 //--------------------------------------------------------------------------
121 // void plfill()
122 //
123 // Pattern fills the polygon bounded by the input points.
124 // For a number of vertices greater than PL_MAXPOLY-1, memory is managed via
125 // malloc/free. Otherwise statically defined arrays of length PL_MAXPOLY
126 // are used.
127 // The final point is explicitly added if it doesn't match up to the first,
128 // to prevent clipping problems.
129 //--------------------------------------------------------------------------
130
131 void
c_plfill(PLINT n,PLFLT_VECTOR x,PLFLT_VECTOR y)132 c_plfill( PLINT n, PLFLT_VECTOR x, PLFLT_VECTOR y )
133 {
134 PLINT _xpoly[PL_MAXPOLY], _ypoly[PL_MAXPOLY];
135 PLINT *xpoly, *ypoly;
136 PLINT i, npts;
137 PLFLT xt, yt;
138
139 if ( plsc->level < 3 )
140 {
141 plabort( "plfill: Please set up window first" );
142 return;
143 }
144 if ( n < 3 )
145 {
146 plabort( "plfill: Not enough points in object" );
147 return;
148 }
149 npts = n;
150 if ( n > PL_MAXPOLY - 1 )
151 {
152 xpoly = (PLINT *) malloc( (size_t) ( n + 1 ) * sizeof ( PLINT ) );
153 ypoly = (PLINT *) malloc( (size_t) ( n + 1 ) * sizeof ( PLINT ) );
154
155 if ( ( xpoly == NULL ) || ( ypoly == NULL ) )
156 {
157 plexit( "plfill: Insufficient memory for large polygon" );
158 }
159 }
160 else
161 {
162 xpoly = _xpoly;
163 ypoly = _ypoly;
164 }
165
166 for ( i = 0; i < n; i++ )
167 {
168 TRANSFORM( x[i], y[i], &xt, &yt );
169 xpoly[i] = plP_wcpcx( xt );
170 ypoly[i] = plP_wcpcy( yt );
171 }
172
173 if ( xpoly[0] != xpoly[n - 1] || ypoly[0] != ypoly[n - 1] )
174 {
175 n++;
176 xpoly[n - 1] = xpoly[0];
177 ypoly[n - 1] = ypoly[0];
178 }
179
180 plP_plfclp( xpoly, ypoly, n, plsc->clpxmi, plsc->clpxma,
181 plsc->clpymi, plsc->clpyma, plP_fill );
182
183 if ( npts > PL_MAXPOLY - 1 )
184 {
185 free( xpoly );
186 free( ypoly );
187 }
188 }
189
190 //--------------------------------------------------------------------------
191 // void plfill3()
192 //
193 // Pattern fills the polygon in 3d bounded by the input points.
194 // For a number of vertices greater than PL_MAXPOLY-1, memory is managed via
195 // malloc/free. Otherwise statically defined arrays of length PL_MAXPOLY
196 // are used.
197 // The final point is explicitly added if it doesn't match up to the first,
198 // to prevent clipping problems.
199 //--------------------------------------------------------------------------
200
201 void
c_plfill3(PLINT n,PLFLT_VECTOR x,PLFLT_VECTOR y,PLFLT_VECTOR z)202 c_plfill3( PLINT n, PLFLT_VECTOR x, PLFLT_VECTOR y, PLFLT_VECTOR z )
203 {
204 PLFLT _tx[PL_MAXPOLY], _ty[PL_MAXPOLY], _tz[PL_MAXPOLY];
205 PLFLT *tx, *ty, *tz;
206 PLFLT *V[3];
207 PLINT _xpoly[PL_MAXPOLY], _ypoly[PL_MAXPOLY];
208 PLINT *xpoly, *ypoly;
209 PLINT i;
210 PLINT npts;
211 PLFLT xmin, xmax, ymin, ymax, zmin, zmax, zscale;
212
213 if ( plsc->level < 3 )
214 {
215 plabort( "plfill3: Please set up window first" );
216 return;
217 }
218 if ( n < 3 )
219 {
220 plabort( "plfill3: Not enough points in object" );
221 return;
222 }
223
224 npts = n;
225 if ( n > PL_MAXPOLY - 1 )
226 {
227 tx = (PLFLT *) malloc( (size_t) ( n + 1 ) * sizeof ( PLFLT ) );
228 ty = (PLFLT *) malloc( (size_t) ( n + 1 ) * sizeof ( PLFLT ) );
229 tz = (PLFLT *) malloc( (size_t) ( n + 1 ) * sizeof ( PLFLT ) );
230 xpoly = (PLINT *) malloc( (size_t) ( n + 1 ) * sizeof ( PLINT ) );
231 ypoly = (PLINT *) malloc( (size_t) ( n + 1 ) * sizeof ( PLINT ) );
232
233 if ( ( tx == NULL ) || ( ty == NULL ) || ( tz == NULL ) ||
234 ( xpoly == NULL ) || ( ypoly == NULL ) )
235 {
236 plexit( "plfill3: Insufficient memory for large polygon" );
237 }
238 }
239 else
240 {
241 tx = _tx;
242 ty = _ty;
243 tz = _tz;
244 xpoly = _xpoly;
245 ypoly = _ypoly;
246 }
247
248 plP_gdom( &xmin, &xmax, &ymin, &ymax );
249 plP_grange( &zscale, &zmin, &zmax );
250
251 // copy the vertices so we can clip without corrupting the input
252 for ( i = 0; i < n; i++ )
253 {
254 tx[i] = x[i]; ty[i] = y[i]; tz[i] = z[i];
255 }
256 if ( tx[0] != tx[n - 1] || ty[0] != ty[n - 1] || tz[0] != tz[n - 1] )
257 {
258 n++;
259 tx[n - 1] = tx[0]; ty[n - 1] = ty[0]; tz[n - 1] = tz[0];
260 }
261 V[0] = tx; V[1] = ty; V[2] = tz;
262 n = plP_clip_poly( n, V, 0, 1, -xmin );
263 n = plP_clip_poly( n, V, 0, -1, xmax );
264 n = plP_clip_poly( n, V, 1, 1, -ymin );
265 n = plP_clip_poly( n, V, 1, -1, ymax );
266 n = plP_clip_poly( n, V, 2, 1, -zmin );
267 n = plP_clip_poly( n, V, 2, -1, zmax );
268 for ( i = 0; i < n; i++ )
269 {
270 xpoly[i] = plP_wcpcx( plP_w3wcx( tx[i], ty[i], tz[i] ) );
271 ypoly[i] = plP_wcpcy( plP_w3wcy( tx[i], ty[i], tz[i] ) );
272 }
273
274 // AWI: in the past we have used
275 // plP_fill(xpoly, ypoly, n);
276 // here, but our educated guess is this fill should be done via the clipping
277 // interface instead as below.
278 // No example tests this code so one of our users will end up inadvertently
279 // testing this for us.
280 //
281 // jc: I have checked, and both versions does give the same result, i.e., clipping
282 // to the window boundaries. The reason is that the above plP_clip_poly() does
283 // the clipping. To check this, is enough to diminish the x/y/z min/max arguments in
284 // plw3d() in x08c. But let's keep it, although 10% slower...
285 //
286 plP_plfclp( xpoly, ypoly, n, plsc->clpxmi, plsc->clpxma,
287 plsc->clpymi, plsc->clpyma, plP_fill );
288
289 // If the original number of points is large, then free the arrays
290 if ( npts > PL_MAXPOLY - 1 )
291 {
292 free( tx );
293 free( ty );
294 free( tz );
295 free( xpoly );
296 free( ypoly );
297 }
298 }
299
300 //--------------------------------------------------------------------------
301 // void plfill_soft()
302 //
303 // Pattern fills in software the polygon bounded by the input points.
304 //--------------------------------------------------------------------------
305
306 void
plfill_soft(short * x,short * y,PLINT n)307 plfill_soft( short *x, short *y, PLINT n )
308 {
309 PLINT i, j;
310 PLINT xp1, yp1, xp2, yp2, xp3, yp3;
311 PLINT k, dinc;
312 PLFLT ci, si;
313 PLINT plbuf_write;
314 double temp;
315
316 buffersize = 2 * BINC;
317 buffer = (PLINT *) malloc( (size_t) buffersize * sizeof ( PLINT ) );
318 if ( !buffer )
319 {
320 plabort( "plfill: Out of memory" );
321 return;
322 }
323
324 //do not write the hatching lines to the buffer as we have already
325 //written the fill to the buffer
326 plbuf_write = plsc->plbuf_write;
327 plsc->plbuf_write = FALSE;
328 // Loop over sets of lines in pattern
329
330 for ( k = 0; k < plsc->nps; k++ )
331 {
332 bufferleng = 0;
333
334 temp = DTOR * plsc->inclin[k] * 0.1;
335 si = sin( temp ) * plsc->ypmm;
336 ci = cos( temp ) * plsc->xpmm;
337
338 // normalize: 1 = si*si + ci*ci
339
340 temp = sqrt( (double) ( si * si + ci * ci ) );
341 si /= temp;
342 ci /= temp;
343
344 dinc = (PLINT) ( plsc->delta[k] * SSQR( plsc->ypmm * ABS( ci ),
345 plsc->xpmm * ABS( si ) ) / 1000. );
346
347 if ( dinc < 0 )
348 dinc = -dinc;
349 if ( dinc == 0 )
350 dinc = 1;
351
352 xp1 = x[n - 2];
353 yp1 = y[n - 2];
354 tran( &xp1, &yp1, (PLFLT) ci, (PLFLT) si );
355
356 xp2 = x[n - 1];
357 yp2 = y[n - 1];
358 tran( &xp2, &yp2, (PLFLT) ci, (PLFLT) si );
359
360 // Loop over points in polygon
361
362 for ( i = 0; i < n; i++ )
363 {
364 xp3 = x[i];
365 yp3 = y[i];
366 tran( &xp3, &yp3, (PLFLT) ci, (PLFLT) si );
367 buildlist( xp1, yp1, xp2, yp2, xp3, yp3, dinc );
368 xp1 = xp2;
369 yp1 = yp2;
370 xp2 = xp3;
371 yp2 = yp3;
372 }
373
374 // Sort list by y then x
375
376 qsort( (void *) buffer, (size_t) bufferleng / 2,
377 (size_t) sizeof ( struct point ), compar );
378
379 // OK, now do the hatching
380
381 i = 0;
382
383 while ( i < bufferleng )
384 {
385 xp1 = buffer[i];
386 yp1 = buffer[i + 1];
387 i += 2;
388 xp2 = xp1;
389 yp2 = yp1;
390 tran( &xp1, &yp1, (PLFLT) ci, (PLFLT) ( -si ) );
391 plP_movphy( xp1, yp1 );
392 xp1 = buffer[i];
393 yp1 = buffer[i + 1];
394 i += 2;
395 if ( yp2 != yp1 )
396 {
397 fprintf( stderr, "plfill: oh oh we are lost\n" );
398 for ( j = 0; j < bufferleng; j += 2 )
399 {
400 fprintf( stderr, "plfill: %d %d\n",
401 (int) buffer[j], (int) buffer[j + 1] );
402 }
403 continue; // Uh oh we're lost
404 }
405 tran( &xp1, &yp1, (PLFLT) ci, (PLFLT) ( -si ) );
406 plP_draphy( xp1, yp1 );
407 }
408 }
409 //reinstate the buffer writing parameter and free memory
410 plsc->plbuf_write = plbuf_write;
411 free( (void *) buffer );
412 }
413
414 //--------------------------------------------------------------------------
415 // Utility functions
416 //--------------------------------------------------------------------------
417
418 void
tran(PLINT * a,PLINT * b,PLFLT c,PLFLT d)419 tran( PLINT *a, PLINT *b, PLFLT c, PLFLT d )
420 {
421 PLINT ta, tb;
422
423 ta = *a;
424 tb = *b;
425
426 *a = (PLINT) floor( (double) ( ta * c + tb * d + 0.5 ) );
427 *b = (PLINT) floor( (double) ( tb * c - ta * d + 0.5 ) );
428 }
429
430 void
buildlist(PLINT xp1,PLINT yp1,PLINT xp2,PLINT yp2,PLINT PL_UNUSED (xp3),PLINT yp3,PLINT dinc)431 buildlist( PLINT xp1, PLINT yp1, PLINT xp2, PLINT yp2, PLINT PL_UNUSED( xp3 ), PLINT yp3,
432 PLINT dinc )
433 {
434 PLINT min_y, max_y;
435 PLINT dx, dy, cstep, nstep, ploty, plotx;
436
437 dx = xp2 - xp1;
438 dy = yp2 - yp1;
439
440 if ( dy == 0 )
441 {
442 if ( yp2 > yp3 && ( ( yp2 % dinc ) == 0 ) )
443 addcoord( xp2, yp2 );
444 return;
445 }
446
447 if ( dy > 0 )
448 {
449 cstep = 1;
450 min_y = yp1;
451 max_y = yp2;
452 }
453 else
454 {
455 cstep = -1;
456 min_y = yp2;
457 max_y = yp1;
458 }
459
460 nstep = ( yp3 > yp2 ? 1 : -1 );
461 if ( yp3 == yp2 )
462 nstep = 0;
463
464 // Build coordinate list
465
466 ploty = ( min_y / dinc ) * dinc;
467 if ( ploty < min_y )
468 ploty += dinc;
469
470 for (; ploty <= max_y; ploty += dinc )
471 {
472 if ( ploty == yp1 )
473 continue;
474 if ( ploty == yp2 )
475 {
476 if ( cstep == -nstep )
477 continue;
478 if ( yp2 == yp3 && yp1 > yp2 )
479 continue;
480 }
481 plotx = xp1 + (PLINT) floor( ( (double) ( ploty - yp1 ) * dx ) / dy + 0.5 );
482 addcoord( plotx, ploty );
483 }
484 }
485
486 void
addcoord(PLINT xp1,PLINT yp1)487 addcoord( PLINT xp1, PLINT yp1 )
488 {
489 PLINT *temp;
490
491 if ( bufferleng + 2 > buffersize )
492 {
493 buffersize += 2 * BINC;
494 temp = (PLINT *) realloc( (void *) buffer,
495 (size_t) buffersize * sizeof ( PLINT ) );
496 if ( !temp )
497 {
498 free( (void *) buffer );
499 plexit( "plfill: Out of memory!" );
500 }
501 buffer = temp;
502 }
503
504 buffer[bufferleng++] = xp1;
505 buffer[bufferleng++] = yp1;
506 }
507
508 int
compar(const void * pnum1,const void * pnum2)509 compar( const void *pnum1, const void *pnum2 )
510 {
511 const struct point *pnt1, *pnt2;
512
513 pnt1 = (const struct point *) pnum1;
514 pnt2 = (const struct point *) pnum2;
515
516 if ( pnt1->y < pnt2->y )
517 return -1;
518 else if ( pnt1->y > pnt2->y )
519 return 1;
520
521 // Only reach here if y coords are equal, so sort by x
522
523 if ( pnt1->x < pnt2->x )
524 return -1;
525 else if ( pnt1->x > pnt2->x )
526 return 1;
527
528 return 0;
529 }
530
531 //--------------------------------------------------------------------------
532 // void plP_plfclp()
533 //
534 // Fills a polygon within the clip limits.
535 //--------------------------------------------------------------------------
536
537 void
plP_plfclp(PLINT * x,PLINT * y,PLINT npts,PLINT xmin,PLINT xmax,PLINT ymin,PLINT ymax,void (* draw)(short *,short *,PLINT))538 plP_plfclp( PLINT *x, PLINT *y, PLINT npts,
539 PLINT xmin, PLINT xmax, PLINT ymin, PLINT ymax,
540 void ( *draw )( short *, short *, PLINT ) )
541 {
542 #ifdef USE_FILL_INTERSECTION_POLYGON
543 PLINT *x10, *y10, *x1, *y1, *if1, i1start = 0, i, im1, n1, n1m1,
544 ifnotpointinpolygon;
545 PLINT x2[4] = { xmin, xmax, xmax, xmin };
546 PLINT y2[4] = { ymin, ymin, ymax, ymax };
547 PLINT if2[4] = { 0, 0, 0, 0 };
548 PLINT n2 = 4;
549
550 // Must have at least 3 points and draw() specified
551 if ( npts < 3 || !draw )
552 return;
553
554 if ( ( x10 = (PLINT *) malloc( (size_t) npts * sizeof ( PLINT ) ) ) == NULL )
555 {
556 plexit( "plP_plfclp: Insufficient memory" );
557 }
558 if ( ( y10 = (PLINT *) malloc( (size_t) npts * sizeof ( PLINT ) ) ) == NULL )
559 {
560 plexit( "plP_plfclp: Insufficient memory" );
561 }
562 // Polygon 2 obviously has no dups nor two consective segments that
563 // are parallel, but get rid of those type of segments in polygon 1
564 // if they exist.
565
566 im1 = npts - 1;
567 n1 = 0;
568 for ( i = 0; i < npts; i++ )
569 {
570 if ( !( x[i] == x[im1] && y[i] == y[im1] ) )
571 {
572 x10[n1] = x[i];
573 y10[n1++] = y[i];
574 }
575 im1 = i;
576 }
577
578 // Must have at least three points that satisfy the above criteria.
579 if ( n1 < 3 )
580 {
581 free( x10 );
582 free( y10 );
583 return;
584 }
585
586 // Polygon 2 obviously has a positive orientation (i.e., as you
587 // ascend in index along the boundary, the points just adjacent to
588 // the boundary and on the left are interior points for the
589 // polygon), but enforce this condition demanded by
590 // fill_intersection_polygon for polygon 1 as well.
591 if ( positive_orientation( n1, x10, y10 ) )
592 {
593 x1 = x10;
594 y1 = y10;
595 }
596 else
597 {
598 if ( ( x1 = (PLINT *) malloc( (size_t) n1 * sizeof ( PLINT ) ) ) == NULL )
599 {
600 plexit( "plP_plfclp: Insufficient memory" );
601 }
602 if ( ( y1 = (PLINT *) malloc( (size_t) n1 * sizeof ( PLINT ) ) ) == NULL )
603 {
604 plexit( "plP_plfclp: Insufficient memory" );
605 }
606 n1m1 = n1 - 1;
607 for ( i = 0; i < n1; i++ )
608 {
609 x1[n1m1 - i] = x10[i];
610 y1[n1m1 - i] = y10[i];
611 }
612 free( x10 );
613 free( y10 );
614 }
615
616 // Insure that the first vertex of polygon 1 (starting with n1 -
617 // 1) that is not on the border of polygon 2 is definitely outside
618 // polygon 2.
619 im1 = n1 - 1;
620 for ( i = 0; i < n1; i++ )
621 {
622 if ( ( ifnotpointinpolygon =
623 notpointinpolygon( n2, x2, y2, x1[im1], y1[im1] ) ) != 1 )
624 break;
625 im1 = i;
626 }
627
628 if ( ifnotpointinpolygon )
629 fill_intersection_polygon( 0, 0, 0, draw, x1, y1, i1start, n1, x2, y2, if2, n2 );
630 else
631 {
632 if ( ( if1 = (PLINT *) calloc( n1, sizeof ( PLINT ) ) ) == NULL )
633 {
634 plexit( "plP_plfclp: Insufficient memory" );
635 }
636 fill_intersection_polygon( 0, 0, 0, draw, x2, y2, i1start, n2, x1, y1, if1, n1 );
637 free( if1 );
638 }
639 free( x1 );
640 free( y1 );
641 return;
642 }
643 #else // USE_FILL_INTERSECTION_POLYGON
644
645 PLINT i, x1, x2, y1, y2;
646 int iclp = 0, iout = 2;
647 short _xclp[2 * PL_MAXPOLY + 2], _yclp[2 * PL_MAXPOLY + 2];
648 short *xclp = NULL, *yclp = NULL;
649 int drawable;
650 int crossed_xmin1 = 0, crossed_xmax1 = 0;
651 int crossed_ymin1 = 0, crossed_ymax1 = 0;
652 int crossed_xmin2 = 0, crossed_xmax2 = 0;
653 int crossed_ymin2 = 0, crossed_ymax2 = 0;
654 int crossed_up = 0, crossed_down = 0;
655 int crossed_left = 0, crossed_right = 0;
656 int inside_lb;
657 int inside_lu;
658 int inside_rb;
659 int inside_ru;
660
661 // Must have at least 3 points and draw() specified
662 if ( npts < 3 || !draw )
663 return;
664
665 if ( npts < PL_MAXPOLY )
666 {
667 xclp = _xclp;
668 yclp = _yclp;
669 }
670 else
671 {
672 if ( ( ( xclp = (short *) malloc( (size_t) ( 2 * npts + 2 ) * sizeof ( short ) ) ) == NULL ) ||
673 ( ( yclp = (short *) malloc( (size_t) ( 2 * npts + 2 ) * sizeof ( short ) ) ) == NULL ) )
674 {
675 plexit( "plP_plfclp: Insufficient memory" );
676 }
677 }
678 inside_lb = !notpointinpolygon( npts, x, y, xmin, ymin );
679 inside_lu = !notpointinpolygon( npts, x, y, xmin, ymax );
680 inside_rb = !notpointinpolygon( npts, x, y, xmax, ymin );
681 inside_ru = !notpointinpolygon( npts, x, y, xmax, ymax );
682
683 for ( i = 0; i < npts - 1; i++ )
684 {
685 x1 = x[i]; x2 = x[i + 1];
686 y1 = y[i]; y2 = y[i + 1];
687
688 drawable = ( INSIDE( x1, y1 ) && INSIDE( x2, y2 ) );
689 if ( !drawable )
690 drawable = !plP_clipline( &x1, &y1, &x2, &y2,
691 xmin, xmax, ymin, ymax );
692
693 if ( drawable )
694 {
695 // Boundary crossing condition -- coming in.
696 crossed_xmin2 = ( x1 == xmin ); crossed_xmax2 = ( x1 == xmax );
697 crossed_ymin2 = ( y1 == ymin ); crossed_ymax2 = ( y1 == ymax );
698
699 crossed_left = ( crossed_left || crossed_xmin2 );
700 crossed_right = ( crossed_right || crossed_xmax2 );
701 crossed_down = ( crossed_down || crossed_ymin2 );
702 crossed_up = ( crossed_up || crossed_ymax2 );
703 iout = iclp + 2;
704 // If the first segment, just add it.
705
706 if ( iclp == 0 )
707 {
708 xclp[iclp] = (short) x1; yclp[iclp] = (short) y1; iclp++;
709 xclp[iclp] = (short) x2; yclp[iclp] = (short) y2; iclp++;
710 }
711
712 // Not first point. If first point of this segment matches up to the
713 // previous point, just add it.
714
715 else if ( x1 == (int) xclp[iclp - 1] && y1 == (int) yclp[iclp - 1] )
716 {
717 xclp[iclp] = (short) x2; yclp[iclp] = (short) y2; iclp++;
718 }
719
720 // Otherwise, we need to add both points, to connect the points in the
721 // polygon along the clip boundary. If we encircled a corner, we have
722 // to add that first.
723 //
724
725 else
726 {
727 // Treat the case where we encircled two corners:
728 // Construct a polygon out of the subset of vertices
729 // Note that the direction is important too when adding
730 // the extra points
731 xclp[iclp + 1] = (short) x2; yclp[iclp + 1] = (short) y2;
732 xclp[iclp + 2] = (short) x1; yclp[iclp + 2] = (short) y1;
733 iout = iout - iclp + 1;
734 // Upper two
735 if ( ( ( crossed_xmin1 && crossed_xmax2 ) ||
736 ( crossed_xmin2 && crossed_xmax1 ) ) &&
737 inside_lu )
738 {
739 if ( crossed_xmin1 )
740 {
741 xclp[iclp] = (short) xmin; yclp[iclp] = (short) ymax; iclp++;
742 xclp[iclp] = (short) xmax; yclp[iclp] = (short) ymax; iclp++;
743 }
744 else
745 {
746 xclp[iclp] = (short) xmax; yclp[iclp] = (short) ymax; iclp++;
747 xclp[iclp] = (short) xmin; yclp[iclp] = (short) ymax; iclp++;
748 }
749 }
750 // Lower two
751 else if ( ( ( crossed_xmin1 && crossed_xmax2 ) ||
752 ( crossed_xmin2 && crossed_xmax1 ) ) &&
753 inside_lb )
754 {
755 if ( crossed_xmin1 )
756 {
757 xclp[iclp] = (short) xmin; yclp[iclp] = (short) ymin; iclp++;
758 xclp[iclp] = (short) xmax; yclp[iclp] = (short) ymin; iclp++;
759 }
760 else
761 {
762 xclp[iclp] = (short) xmax; yclp[iclp] = (short) ymin; iclp++;
763 xclp[iclp] = (short) xmin; yclp[iclp] = (short) ymin; iclp++;
764 }
765 }
766 // Left two
767 else if ( ( ( crossed_ymin1 && crossed_ymax2 ) ||
768 ( crossed_ymin2 && crossed_ymax1 ) ) &&
769 inside_lb )
770 {
771 if ( crossed_ymin1 )
772 {
773 xclp[iclp] = (short) xmin; yclp[iclp] = (short) ymin; iclp++;
774 xclp[iclp] = (short) xmin; yclp[iclp] = (short) ymax; iclp++;
775 }
776 else
777 {
778 xclp[iclp] = (short) xmin; yclp[iclp] = (short) ymax; iclp++;
779 xclp[iclp] = (short) xmin; yclp[iclp] = (short) ymin; iclp++;
780 }
781 }
782 // Right two
783 else if ( ( ( crossed_ymin1 && crossed_ymax2 ) ||
784 ( crossed_ymin2 && crossed_ymax1 ) ) &&
785 inside_rb )
786 {
787 if ( crossed_ymin1 )
788 {
789 xclp[iclp] = (short) xmax; yclp[iclp] = (short) ymin; iclp++;
790 xclp[iclp] = (short) xmax; yclp[iclp] = (short) ymax; iclp++;
791 }
792 else
793 {
794 xclp[iclp] = (short) xmax; yclp[iclp] = (short) ymax; iclp++;
795 xclp[iclp] = (short) xmax; yclp[iclp] = (short) ymin; iclp++;
796 }
797 }
798 // Now the case where we encircled one corner
799 // Lower left
800 else if ( ( crossed_xmin1 && crossed_ymin2 ) ||
801 ( crossed_ymin1 && crossed_xmin2 ) )
802 {
803 xclp[iclp] = (short) xmin; yclp[iclp] = (short) ymin; iclp++;
804 }
805 // Lower right
806 else if ( ( crossed_xmax1 && crossed_ymin2 ) ||
807 ( crossed_ymin1 && crossed_xmax2 ) )
808 {
809 xclp[iclp] = (short) xmax; yclp[iclp] = (short) ymin; iclp++;
810 }
811 // Upper left
812 else if ( ( crossed_xmin1 && crossed_ymax2 ) ||
813 ( crossed_ymax1 && crossed_xmin2 ) )
814 {
815 xclp[iclp] = (short) xmin; yclp[iclp] = (short) ymax; iclp++;
816 }
817 // Upper right
818 else if ( ( crossed_xmax1 && crossed_ymax2 ) ||
819 ( crossed_ymax1 && crossed_xmax2 ) )
820 {
821 xclp[iclp] = (short) xmax; yclp[iclp] = (short) ymax; iclp++;
822 }
823
824 // Now add current segment.
825 xclp[iclp] = (short) x1; yclp[iclp] = (short) y1; iclp++;
826 xclp[iclp] = (short) x2; yclp[iclp] = (short) y2; iclp++;
827 }
828
829 // Boundary crossing condition -- going out.
830 crossed_xmin1 = ( x2 == xmin ); crossed_xmax1 = ( x2 == xmax );
831 crossed_ymin1 = ( y2 == ymin ); crossed_ymax1 = ( y2 == ymax );
832 }
833 }
834
835 // Limit case - all vertices are outside of bounding box. So just fill entire
836 // box, *if* the bounding box is completely encircled.
837 //
838 if ( iclp == 0 )
839 {
840 if ( inside_lb )
841 {
842 xclp[0] = (short) xmin; yclp[0] = (short) ymin;
843 xclp[1] = (short) xmax; yclp[1] = (short) ymin;
844 xclp[2] = (short) xmax; yclp[2] = (short) ymax;
845 xclp[3] = (short) xmin; yclp[3] = (short) ymax;
846 xclp[4] = (short) xmin; yclp[4] = (short) ymin;
847 ( *draw )( xclp, yclp, 5 );
848
849 if ( xclp != _xclp )
850 {
851 free( xclp );
852 free( yclp );
853 }
854
855 return;
856 }
857 }
858
859 // Now handle cases where fill polygon intersects two sides of the box
860
861 if ( iclp >= 2 )
862 {
863 int debug = 0;
864 int dir = circulation( x, y, npts );
865 if ( debug )
866 {
867 if ( ( xclp[0] == (short) xmin && xclp[iclp - 1] == (short) xmax ) ||
868 ( xclp[0] == (short) xmax && xclp[iclp - 1] == (short) xmin ) ||
869 ( yclp[0] == (short) ymin && yclp[iclp - 1] == (short) ymax ) ||
870 ( yclp[0] == (short) ymax && yclp[iclp - 1] == (short) ymin ) ||
871 ( xclp[0] == (short) xmin && yclp[iclp - 1] == (short) ymin ) ||
872 ( yclp[0] == (short) ymin && xclp[iclp - 1] == (short) xmin ) ||
873 ( xclp[0] == (short) xmax && yclp[iclp - 1] == (short) ymin ) ||
874 ( yclp[0] == (short) ymin && xclp[iclp - 1] == (short) xmax ) ||
875 ( xclp[0] == (short) xmax && yclp[iclp - 1] == (short) ymax ) ||
876 ( yclp[0] == (short) ymax && xclp[iclp - 1] == (short) xmax ) ||
877 ( xclp[0] == (short) xmin && yclp[iclp - 1] == (short) ymax ) ||
878 ( yclp[0] == (short) ymax && xclp[iclp - 1] == (short) xmin ) )
879 {
880 printf( "dir=%d, clipped points:\n", dir );
881 for ( i = 0; i < iclp; i++ )
882 printf( " x[%d]=%hd y[%d]=%hd", i, xclp[i], i, yclp[i] );
883 printf( "\n" );
884 printf( "pre-clipped points:\n" );
885 for ( i = 0; i < npts; i++ )
886 printf( " x[%d]=%d y[%d]=%d", i, x[i], i, y[i] );
887 printf( "\n" );
888 }
889 }
890
891 // The cases where the fill region is divided 2/2
892 // Divided horizontally
893 if ( xclp[0] == (short) xmin && xclp[iclp - 1] == (short) xmax )
894 {
895 if ( dir > 0 )
896 {
897 xclp[iclp] = (short) xmax; yclp[iclp] = (short) ymax; iclp++;
898 xclp[iclp] = (short) xmin; yclp[iclp] = (short) ymax; iclp++;
899 }
900 else
901 {
902 xclp[iclp] = (short) xmax; yclp[iclp] = (short) ymin; iclp++;
903 xclp[iclp] = (short) xmin; yclp[iclp] = (short) ymin; iclp++;
904 }
905 }
906 else if ( xclp[0] == (short) xmax && xclp[iclp - 1] == (short) xmin )
907 {
908 if ( dir > 0 )
909 {
910 xclp[iclp] = (short) xmin; yclp[iclp] = (short) ymin; iclp++;
911 xclp[iclp] = (short) xmax; yclp[iclp] = (short) ymin; iclp++;
912 }
913 else
914 {
915 xclp[iclp] = (short) xmin; yclp[iclp] = (short) ymax; iclp++;
916 xclp[iclp] = (short) xmax; yclp[iclp] = (short) ymax; iclp++;
917 }
918 }
919
920 // Divided vertically
921 else if ( yclp[0] == (short) ymin && yclp[iclp - 1] == (short) ymax )
922 {
923 if ( dir > 0 )
924 {
925 xclp[iclp] = (short) xmin; yclp[iclp] = (short) ymax; iclp++;
926 xclp[iclp] = (short) xmin; yclp[iclp] = (short) ymin; iclp++;
927 }
928 else
929 {
930 xclp[iclp] = (short) xmax; yclp[iclp] = (short) ymax; iclp++;
931 xclp[iclp] = (short) xmax; yclp[iclp] = (short) ymin; iclp++;
932 }
933 }
934 else if ( yclp[0] == (short) ymax && yclp[iclp - 1] == (short) ymin )
935 {
936 if ( dir > 0 )
937 {
938 xclp[iclp] = (short) xmax; yclp[iclp] = (short) ymin; iclp++;
939 xclp[iclp] = (short) xmax; yclp[iclp] = (short) ymax; iclp++;
940 }
941 else
942 {
943 xclp[iclp] = (short) xmin; yclp[iclp] = (short) ymin; iclp++;
944 xclp[iclp] = (short) xmin; yclp[iclp] = (short) ymax; iclp++;
945 }
946 }
947
948 // The cases where the fill region is divided 3/1 --
949 // LL LR UR UL
950 // +-----+ +-----+ +-----+ +-----+
951 // | | | | | \| |/ |
952 // | | | | | | | |
953 // |\ | | /| | | | |
954 // +-----+ +-----+ +-----+ +-----+
955 //
956 // Note when we go the long way around, if the direction is reversed the
957 // three vertices must be visited in the opposite order.
958 //
959 // LL, short way around
960 else if ( ( xclp[0] == (short) xmin && yclp[iclp - 1] == (short) ymin && dir < 0 ) ||
961 ( yclp[0] == (short) ymin && xclp[iclp - 1] == (short) xmin && dir > 0 ) )
962 {
963 xclp[iclp] = (short) xmin; yclp[iclp] = (short) ymin; iclp++;
964 }
965 // LL, long way around, counterclockwise
966 else if ( ( xclp[0] == (short) xmin && yclp[iclp - 1] == (short) ymin && dir > 0 ) )
967 {
968 xclp[iclp] = (short) xmax; yclp[iclp] = (short) ymin; iclp++;
969 xclp[iclp] = (short) xmax; yclp[iclp] = (short) ymax; iclp++;
970 xclp[iclp] = (short) xmin; yclp[iclp] = (short) ymax; iclp++;
971 }
972 // LL, long way around, clockwise
973 else if ( ( yclp[0] == ymin && xclp[iclp - 1] == xmin && dir < 0 ) )
974 {
975 xclp[iclp] = (short) xmin; yclp[iclp] = (short) ymax; iclp++;
976 xclp[iclp] = (short) xmax; yclp[iclp] = (short) ymax; iclp++;
977 xclp[iclp] = (short) xmax; yclp[iclp] = (short) ymin; iclp++;
978 }
979 // LR, short way around
980 else if ( ( xclp[0] == (short) xmax && yclp[iclp - 1] == (short) ymin && dir > 0 ) ||
981 ( yclp[0] == (short) ymin && xclp[iclp - 1] == (short) xmax && dir < 0 ) )
982 {
983 xclp[iclp] = (short) xmax; yclp[iclp] = (short) ymin; iclp++;
984 }
985 // LR, long way around, counterclockwise
986 else if ( yclp[0] == (short) ymin && xclp[iclp - 1] == (short) xmax && dir > 0 )
987 {
988 xclp[iclp] = (short) xmax; yclp[iclp] = (short) ymax; iclp++;
989 xclp[iclp] = (short) xmin; yclp[iclp] = (short) ymax; iclp++;
990 xclp[iclp] = (short) xmin; yclp[iclp] = (short) ymin; iclp++;
991 }
992 // LR, long way around, clockwise
993 else if ( xclp[0] == (short) xmax && yclp[iclp - 1] == (short) ymin && dir < 0 )
994 {
995 xclp[iclp] = (short) xmin; yclp[iclp] = (short) ymin; iclp++;
996 xclp[iclp] = (short) xmin; yclp[iclp] = (short) ymax; iclp++;
997 xclp[iclp] = (short) xmax; yclp[iclp] = (short) ymax; iclp++;
998 }
999 // UR, short way around
1000 else if ( ( xclp[0] == (short) xmax && yclp[iclp - 1] == (short) ymax && dir < 0 ) ||
1001 ( yclp[0] == (short) ymax && xclp[iclp - 1] == (short) xmax && dir > 0 ) )
1002 {
1003 xclp[iclp] = (short) xmax; yclp[iclp] = (short) ymax; iclp++;
1004 }
1005 // UR, long way around, counterclockwise
1006 else if ( xclp[0] == (short) xmax && yclp[iclp - 1] == (short) ymax && dir > 0 )
1007 {
1008 xclp[iclp] = (short) xmin; yclp[iclp] = (short) ymax; iclp++;
1009 xclp[iclp] = (short) xmin; yclp[iclp] = (short) ymin; iclp++;
1010 xclp[iclp] = (short) xmax; yclp[iclp] = (short) ymin; iclp++;
1011 }
1012 // UR, long way around, clockwise
1013 else if ( yclp[0] == (short) ymax && xclp[iclp - 1] == (short) xmax && dir < 0 )
1014 {
1015 xclp[iclp] = (short) xmax; yclp[iclp] = (short) ymin; iclp++;
1016 xclp[iclp] = (short) xmin; yclp[iclp] = (short) ymin; iclp++;
1017 xclp[iclp] = (short) xmin; yclp[iclp] = (short) ymax; iclp++;
1018 }
1019 // UL, short way around
1020 else if ( ( xclp[0] == (short) xmin && yclp[iclp - 1] == (short) ymax && dir > 0 ) ||
1021 ( yclp[0] == (short) ymax && xclp[iclp - 1] == (short) xmin && dir < 0 ) )
1022 {
1023 xclp[iclp] = (short) xmin; yclp[iclp] = (short) ymax; iclp++;
1024 }
1025 // UL, long way around, counterclockwise
1026 else if ( yclp[0] == (short) ymax && xclp[iclp - 1] == (short) xmin && dir > 0 )
1027 {
1028 xclp[iclp] = (short) xmin; yclp[iclp] = (short) ymin; iclp++;
1029 xclp[iclp] = (short) xmax; yclp[iclp] = (short) ymin; iclp++;
1030 xclp[iclp] = (short) xmax; yclp[iclp] = (short) ymax; iclp++;
1031 }
1032 // UL, long way around, clockwise
1033 else if ( xclp[0] == (short) xmin && yclp[iclp - 1] == (short) ymax && dir < 0 )
1034 {
1035 xclp[iclp] = (short) xmax; yclp[iclp] = (short) ymax; iclp++;
1036 xclp[iclp] = (short) xmax; yclp[iclp] = (short) ymin; iclp++;
1037 xclp[iclp] = (short) xmin; yclp[iclp] = (short) ymin; iclp++;
1038 }
1039 }
1040
1041 // Check for the case that only one side has been crossed
1042 // (AM) Just checking a single point turns out not to be
1043 // enough, apparently the crossed_*1 and crossed_*2 variables
1044 // are not quite what I expected.
1045 //
1046 if ( inside_lb + inside_rb + inside_lu + inside_ru == 4 )
1047 {
1048 int dir = circulation( x, y, npts );
1049 PLINT xlim[4], ylim[4];
1050 int insert = -99;
1051 int incr = -99;
1052
1053 xlim[0] = xmin; ylim[0] = ymin;
1054 xlim[1] = xmax; ylim[1] = ymin;
1055 xlim[2] = xmax; ylim[2] = ymax;
1056 xlim[3] = xmin; ylim[3] = ymax;
1057
1058 if ( crossed_left + crossed_right + crossed_down + crossed_up == 1 )
1059 {
1060 if ( dir > 0 )
1061 {
1062 incr = 1;
1063 insert = 0 * crossed_left + 1 * crossed_down + 2 * crossed_right +
1064 3 * crossed_up;
1065 }
1066 else
1067 {
1068 incr = -1;
1069 insert = 3 * crossed_left + 2 * crossed_up + 1 * crossed_right +
1070 0 * crossed_down;
1071 }
1072 }
1073
1074 if ( crossed_left + crossed_right == 2 && crossed_down + crossed_up == 0 )
1075 {
1076 if ( xclp[iclp - 1] == xmin )
1077 {
1078 if ( dir == 1 )
1079 {
1080 incr = 1;
1081 insert = 0;
1082 }
1083 else
1084 {
1085 incr = -1;
1086 insert = 3;
1087 }
1088 }
1089 else
1090 {
1091 if ( dir == 1 )
1092 {
1093 incr = 1;
1094 insert = 1;
1095 }
1096 else
1097 {
1098 incr = -1;
1099 insert = 2;
1100 }
1101 }
1102 }
1103
1104 if ( crossed_left + crossed_right == 0 && crossed_down + crossed_up == 2 )
1105 {
1106 if ( yclp[iclp - 1] == ymin )
1107 {
1108 if ( dir == 1 )
1109 {
1110 incr = 1;
1111 insert = 1;
1112 }
1113 else
1114 {
1115 incr = -1;
1116 insert = 0;
1117 }
1118 }
1119 else
1120 {
1121 if ( dir == 1 )
1122 {
1123 incr = 1;
1124 insert = 3;
1125 }
1126 else
1127 {
1128 incr = -1;
1129 insert = 2;
1130 }
1131 }
1132 }
1133
1134 for ( i = 0; i < 4; i++ )
1135 {
1136 xclp[iclp] = (short) xlim[insert];
1137 yclp[iclp] = (short) ylim[insert];
1138 iclp++;
1139 insert += incr;
1140 if ( insert > 3 )
1141 insert = 0;
1142 if ( insert < 0 )
1143 insert = 3;
1144 }
1145 }
1146
1147 // Draw the sucker
1148 if ( iclp >= 3 )
1149 ( *draw )( xclp, yclp, iclp );
1150
1151 if ( xclp != _xclp )
1152 {
1153 free( xclp );
1154 free( yclp );
1155 }
1156 }
1157 #endif // USE_FILL_INTERSECTION_POLYGON
1158
1159 //--------------------------------------------------------------------------
1160 // int circulation()
1161 //
1162 // Returns the circulation direction for a given polyline: positive is
1163 // counterclockwise, negative is clockwise (right hand rule).
1164 //
1165 // Used to get the circulation of the fill polygon around the bounding box,
1166 // when the fill polygon is larger than the bounding box. Counts left
1167 // (positive) vs right (negative) hand turns using a cross product, instead of
1168 // performing all the expensive trig calculations needed to get this 100%
1169 // correct. For the fill cases encountered in plplot, this treatment should
1170 // give the correct answer most of the time, by far. When used with plshades,
1171 // the typical return value is 3 or -3, since 3 turns are necessary in order
1172 // to complete the fill region. Only for really oddly shaped fill regions
1173 // will it give the wrong answer.
1174 //
1175 // AM:
1176 // Changed the computation: use the outer product to compute the surface
1177 // area, the sign determines if the polygon is followed clockwise or
1178 // counterclockwise. This is more reliable. Floating-point numbers
1179 // are used to avoid overflow.
1180 //--------------------------------------------------------------------------
1181
1182 int
circulation(PLINT * x,PLINT * y,PLINT npts)1183 circulation( PLINT *x, PLINT *y, PLINT npts )
1184 {
1185 PLFLT xproduct;
1186 int direction = 0;
1187 PLFLT x1, y1, x2, y2, x3, y3;
1188 int i;
1189
1190 xproduct = 0.0;
1191 x1 = x[0];
1192 y1 = y[0];
1193 for ( i = 1; i < npts - 2; i++ )
1194 {
1195 x2 = x[i + 1];
1196 y2 = y[i + 1];
1197 x3 = x[i + 2];
1198 y3 = y[i + 2];
1199 xproduct = xproduct + ( x2 - x1 ) * ( y3 - y2 ) - ( y2 - y1 ) * ( x3 - x2 );
1200 }
1201
1202 if ( xproduct > 0.0 )
1203 direction = 1;
1204 if ( xproduct < 0.0 )
1205 direction = -1;
1206 return direction;
1207 }
1208
1209
1210 // PLFLT wrapper for !notpointinpolygon.
1211 int
plP_pointinpolygon(PLINT n,PLFLT_VECTOR x,PLFLT_VECTOR y,PLFLT xp,PLFLT yp)1212 plP_pointinpolygon( PLINT n, PLFLT_VECTOR x, PLFLT_VECTOR y, PLFLT xp, PLFLT yp )
1213 {
1214 int i, return_value;
1215 PLINT *xint, *yint;
1216 PLFLT xmaximum = fabs( xp ), ymaximum = fabs( yp ), xscale, yscale;
1217 if ( ( xint = (PLINT *) malloc( (size_t) n * sizeof ( PLINT ) ) ) == NULL )
1218 {
1219 plexit( "PlP_pointinpolygon: Insufficient memory" );
1220 }
1221 if ( ( yint = (PLINT *) malloc( (size_t) n * sizeof ( PLINT ) ) ) == NULL )
1222 {
1223 plexit( "PlP_pointinpolygon: Insufficient memory" );
1224 }
1225 for ( i = 0; i < n; i++ )
1226 {
1227 xmaximum = MAX( xmaximum, fabs( x[i] ) );
1228 ymaximum = MAX( ymaximum, fabs( y[i] ) );
1229 }
1230 xscale = 1.e8 / xmaximum;
1231 yscale = 1.e8 / ymaximum;
1232 for ( i = 0; i < n; i++ )
1233 {
1234 xint[i] = (PLINT) ( xscale * x[i] );
1235 yint[i] = (PLINT) ( yscale * y[i] );
1236 }
1237 return_value = !notpointinpolygon( n, xint, yint,
1238 (PLINT) ( xscale * xp ), (PLINT) ( yscale * yp ) );
1239 free( xint );
1240 free( yint );
1241 return return_value;
1242 }
1243 //--------------------------------------------------------------------------
1244 // int notpointinpolygon()
1245 //
1246 // Returns 0, 1, or 2 depending on whether the test point is definitely
1247 // inside, near the border, or definitely outside the polygon.
1248 // Notes:
1249 // This "Ray casting algorithm" has been described in
1250 // http://en.wikipedia.org/wiki/Point_in_polygon.
1251 // Logic still needs to be inserted to take care of the "ray passes
1252 // through vertex" problem in a numerically robust way.
1253 //--------------------------------------------------------------------------
1254
1255 // Temporary until get rid of old code altogether.
1256 #define NEW_NOTPOINTINPOLYGON_CODE
1257 static int
notpointinpolygon(PLINT n,PLINT_VECTOR x,PLINT_VECTOR y,PLINT xp,PLINT yp)1258 notpointinpolygon( PLINT n, PLINT_VECTOR x, PLINT_VECTOR y, PLINT xp, PLINT yp )
1259 {
1260 #ifdef NEW_NOTPOINTINPOLYGON_CODE
1261 int i, im1, ifnotcrossed;
1262 int count_crossings = 0;
1263 PLINT xmin, xout, yout, xintersect, yintersect;
1264
1265
1266 // Determine a point outside the polygon
1267
1268 xmin = x[0];
1269 xout = x[0];
1270 yout = y[0];
1271 for ( i = 1; i < n; i++ )
1272 {
1273 xout = MAX( xout, x[i] );
1274 xmin = MIN( xmin, x[i] );
1275 }
1276 // + 10 to make sure completely outside.
1277 xout = xout + ( xout - xmin ) + 10;
1278
1279 // Determine whether the line between (xout, yout) and (xp, yp) intersects
1280 // one of the polygon segments.
1281
1282 im1 = n - 1;
1283 for ( i = 0; i < n; i++ )
1284 {
1285 if ( !( x[im1] == x[i] && y[im1] == y[i] ) )
1286 {
1287 ifnotcrossed = notcrossed( &xintersect, &yintersect,
1288 x[im1], y[im1], x[i], y[i],
1289 xp, yp, xout, yout );
1290
1291 if ( !ifnotcrossed )
1292 count_crossings++;
1293 else if ( ifnotcrossed & ( PL_NEAR_A1 | PL_NEAR_A2 | PL_NEAR_B1 | PL_NEAR_B2 ) )
1294 return 1;
1295 }
1296 im1 = i;
1297 }
1298
1299 // return 0 if the test point is definitely inside
1300 // (count_crossings odd), return 1 if the test point is near (see
1301 // above logic), and return 2 if the test point is definitely
1302 // outside the border (count_crossings even).
1303 if ( ( count_crossings % 2 ) == 1 )
1304 return 0;
1305 else
1306 return 2;
1307 }
1308 #else // NEW_NOTPOINTINPOLYGON_CODE
1309 int i;
1310 int count_crossings;
1311 PLFLT x1, y1, x2, y2, xpp, ypp, xout, yout, xmax;
1312 PLFLT xvp, yvp, xvv, yvv, xv1, yv1, xv2, yv2;
1313 PLFLT inprod1, inprod2;
1314
1315 xpp = (PLFLT) xp;
1316 ypp = (PLFLT) yp;
1317
1318 count_crossings = 0;
1319
1320
1321 // Determine a point outside the polygon
1322
1323 xmax = x[0];
1324 xout = x[0];
1325 yout = y[0];
1326 for ( i = 0; i < n; i++ )
1327 {
1328 if ( xout > x[i] )
1329 {
1330 xout = x[i];
1331 }
1332 if ( xmax < x[i] )
1333 {
1334 xmax = x[i];
1335 }
1336 }
1337 xout = xout - ( xmax - xout );
1338
1339 // Determine for each side whether the line segment between
1340 // our two points crosses the vertex
1341
1342 xpp = (PLFLT) xp;
1343 ypp = (PLFLT) yp;
1344
1345 xvp = xpp - xout;
1346 yvp = ypp - yout;
1347
1348 for ( i = 0; i < n; i++ )
1349 {
1350 x1 = (PLFLT) x[i];
1351 y1 = (PLFLT) y[i];
1352 if ( i < n - 1 )
1353 {
1354 x2 = (PLFLT) x[i + 1];
1355 y2 = (PLFLT) y[i + 1];
1356 }
1357 else
1358 {
1359 x2 = (PLFLT) x[0];
1360 y2 = (PLFLT) y[0];
1361 }
1362
1363 // Skip zero-length segments
1364 if ( x1 == x2 && y1 == y2 )
1365 {
1366 continue;
1367 }
1368
1369 // Line through the two fixed points:
1370 // Are x1 and x2 on either side?
1371 xv1 = x1 - xout;
1372 yv1 = y1 - yout;
1373 xv2 = x2 - xout;
1374 yv2 = y2 - yout;
1375 inprod1 = xv1 * yvp - yv1 * xvp; // Well, with the normal vector
1376 inprod2 = xv2 * yvp - yv2 * xvp;
1377 if ( inprod1 * inprod2 >= 0.0 )
1378 {
1379 // No crossing possible!
1380 continue;
1381 }
1382
1383 // Line through the two vertices:
1384 // Are xout and xpp on either side?
1385 xvv = x2 - x1;
1386 yvv = y2 - y1;
1387 xv1 = xpp - x1;
1388 yv1 = ypp - y1;
1389 xv2 = xout - x1;
1390 yv2 = yout - y1;
1391 inprod1 = xv1 * yvv - yv1 * xvv;
1392 inprod2 = xv2 * yvv - yv2 * xvv;
1393 if ( inprod1 * inprod2 >= 0.0 )
1394 {
1395 // No crossing possible!
1396 continue;
1397 }
1398
1399 // We do have a crossing
1400 count_crossings++;
1401 }
1402
1403 // Return the result: an even number of crossings means the
1404 // point is outside the polygon
1405
1406 return !( count_crossings % 2 );
1407 }
1408 #endif // NEW_NOTPOINTINPOLYGON_CODE
1409
1410 #define MAX_RECURSION_DEPTH 10
1411
1412 // Fill intersection of two simple polygons that do no self-intersect,
1413 // and which have no duplicate vertices or two consecutive edges that
1414 // are parallel. A further requirement is that both polygons have a
1415 // positive orientation (see
1416 // http://en.wikipedia.org/wiki/Curve_orientation). That is, as you
1417 // traverse the boundary in index order, the inside area of the
1418 // polygon is always on the left. Finally, the first vertex of
1419 // polygon 1 (starting with n1 -1) that is not near the border of
1420 // polygon 2 must be outside polygon 2. N.B. it is the calling
1421 // routine's responsibility to insure all those requirements are
1422 // satisfied.
1423 //
1424 // Two polygons that do not self intersect must have an even number of
1425 // edge crossings between them. (ignoring vertex intersections which
1426 // touch, but do not cross). fill_intersection_polygon eliminates
1427 // those intersection crossings by recursion (calling the same routine
1428 // twice again with the second polygon split at a boundary defined by
1429 // the first intersection point, all polygon 1 vertices between the
1430 // intersections, and the second intersection point). Once the
1431 // recursion has eliminated all crossing edges, fill or not using the
1432 // appropriate polygon depending on whether the first and second
1433 // polygons are identical or whether one of them is entirely inside
1434 // the other of them. If ifextrapolygon is true, the fill step will
1435 // consist of another recursive call to the routine with
1436 // ifextrapolygon false, and the second polygon set to an additional
1437 // polygon defined by the stream (not yet implemented).
1438
1439 // arguments to intersection_polygon:
1440 // recursion_depth is just what it says.
1441 // ifextrapolygon used to decide whether to use extra polygon from the stream.
1442 //fill is the fill routine.
1443 //x1, *y1, n1 define the polygon 1 vertices.
1444 // i1start is the first polygon 1 index to look at (because all the previous
1445 // ones have been completely processed).
1446 //x2, *y2, *if2, n2 define the polygon 2 vertices plus a status indicator
1447 // for each vertex which is 1 for a previous crossing and 2 for a polygon
1448 // 1 vertex.
1449 // fill_status is 1 when polygons 1 and 2 _must_ include some joint
1450 // filled area and is -1 when polygons 1 and 2 _must_ include some
1451 // unfilled area. fill_status of +/- 1 is determined from the
1452 // orientations of polygon 1 and 2 from the next higher recursion
1453 // level and how those two are combined to form the polygon 2
1454 // split at this recursion level. fill_status = 0 occurs (at
1455 // recursion level 0) for polygons 1 and 2 that are independent of
1456 // each other.
1457
1458 #ifdef USE_FILL_INTERSECTION_POLYGON
1459 void
fill_intersection_polygon(PLINT recursion_depth,PLINT ifextrapolygon,PLINT fill_status,void (* fill)(short *,short *,PLINT),PLINT_VECTOR x1,PLINT_VECTOR y1,PLINT i1start,PLINT n1,PLINT_VECTOR x2,PLINT_VECTOR y2,PLINT_VECTOR if2,PLINT n2)1460 fill_intersection_polygon( PLINT recursion_depth, PLINT ifextrapolygon,
1461 PLINT fill_status,
1462 void ( *fill )( short *, short *, PLINT ),
1463 PLINT_VECTOR x1, PLINT_VECTOR y1,
1464 PLINT i1start, PLINT n1,
1465 PLINT_VECTOR x2, PLINT_VECTOR y2,
1466 PLINT_VECTOR if2, PLINT n2 )
1467 {
1468 PLINT i1, i1m1, i1start_new,
1469 i2, i2m1,
1470 kk, kkstart1, kkstart21, kkstart22,
1471 k, kstart, range1,
1472 range21, range22, ncrossed, ncrossed_change,
1473 nsplit1, nsplit2, nsplit2m1;
1474 PLINT xintersect[2], yintersect[2], i1intersect[2],
1475 i2intersect[2];
1476 PLINT *xsplit1, *ysplit1, *ifsplit1,
1477 *xsplit2, *ysplit2, *ifsplit2;
1478 PLINT ifill, nfill = 0,
1479 ifnotpolygon1inpolygon2, ifnotpolygon2inpolygon1;
1480 PLINT_VECTOR xfiller, *yfiller;
1481 short *xfill, *yfill;
1482
1483 if ( recursion_depth > MAX_RECURSION_DEPTH )
1484 {
1485 plwarn( "fill_intersection_polygon: Recursion_depth too large. "
1486 "Probably an internal error figuring out intersections. " );
1487 return;
1488 }
1489
1490 if ( n1 < 3 )
1491 {
1492 plwarn( "fill_intersection_polygon: Internal error; n1 < 3." );
1493 return;
1494 }
1495
1496 if ( n2 < 3 )
1497 {
1498 plwarn( "fill_intersection_polygon: Internal error; n2 < 3." );
1499 return;
1500 }
1501
1502 if ( i1start < 0 || i1start >= n1 )
1503 {
1504 plwarn( "fill_intersection_polygon: invalid i1start." );
1505 return;
1506 }
1507
1508 // Check that there are no duplicate vertices.
1509 i1m1 = i1start - 1;
1510 if ( i1m1 < 0 )
1511 i1m1 = n1 - 1;
1512
1513 for ( i1 = i1start; i1 < n1; i1++ )
1514 {
1515 if ( x1[i1] == x1[i1m1] && y1[i1] == y1[i1m1] )
1516 break;
1517 i1m1 = i1;
1518 }
1519
1520 if ( i1 < n1 )
1521 {
1522 plwarn( "fill_intersection_polygon: Internal error; i1 < n1." );
1523 return;
1524 }
1525
1526 i2m1 = n2 - 1;
1527 for ( i2 = 0; i2 < n2; i2++ )
1528 {
1529 if ( x2[i2] == x2[i2m1] && y2[i2] == y2[i2m1] )
1530 break;
1531 i2m1 = i2;
1532 }
1533
1534 if ( i2 < n2 )
1535 {
1536 plwarn( "fill_intersection_polygon: Internal error; i2 < n2." );
1537 return;
1538 }
1539
1540 //
1541 //
1542 // Follow polygon 1 (checking intersections with polygon 2 for each
1543 // segment of polygon 1) until you have accumulated two
1544 // intersections with polygon 2. Here is an ascii-art illustration
1545 // of the situation.
1546 //
1547 //
1548 // 2???2
1549 //
1550 // 2 2
1551 //
1552 // --- 1 1
1553 // 1 2 1 1 ...
1554 // X
1555 // 1
1556 // X
1557 // 2
1558 // 1 1
1559 // 1
1560 // 2
1561 // 2
1562 // 2???2
1563 //
1564 //
1565 // "1" marks polygon 1 vertices, "2" marks polygon 2 vertices, "X"
1566 // marks the intersections, "---" stands for part of polygon 1
1567 // that has been previously searched for all possible intersections
1568 // from index 0, and "..." means polygon 1 continues
1569 // with more potential intersections above and/or below this diagram
1570 // before it finally hooks back to connect with the index 0 vertex.
1571 // "2???2" stands for parts of polygon 2 that must connect with each other
1572 // (since the polygon 1 path between the two intersections is
1573 // known to be free of intersections.)
1574 //
1575 // Polygon 2 is split at the boundary defined by the two
1576 // intersections and all (in this case three) polygon 1 vertices
1577 // between the two intersections for the next recursion level. We
1578 // absolutely know for that boundary that no more intersections can
1579 // occur (both polygon 1 and polygon 2 are guaranteed not to
1580 // self-intersect) so we mark the status of those vertices with that
1581 // information so those polygon 2 split vertices will not be used to
1582 // search for further intersections at deeper recursion levels.
1583 // Note, we know nothing about whether the remaining "2???2" parts of the
1584 // split polygon 2 intersect with polygon 1 or not so those will
1585 // continued to be searched at deeper recursion levels. At the same
1586 // time, we absolutely know that the part of polygon 1 to the left of
1587 // rightmost x down to and including index 0 cannot yield more
1588 // intersections with any split of polygon 2 so we adjust the lower
1589 // limit of polygon 1 to be used for intersection searches at deeper
1590 // recursion levels. The result should be that at sufficiently deep
1591 // recursion depth we always end up with the case that there are no
1592 // intersections to be found between polygon 1 and some polygon 2
1593 // split, and in that case we move on to the end phase below.
1594 //
1595 ncrossed = 0;
1596 i1m1 = i1start - 1;
1597 if ( i1m1 < 0 )
1598 i1m1 += n1;
1599 for ( i1 = i1start; i1 < n1; i1++ )
1600 {
1601 ncrossed_change = number_crossings(
1602 &xintersect[ncrossed], &yintersect[ncrossed],
1603 &i2intersect[ncrossed], 2 - ncrossed,
1604 i1, n1, x1, y1, n2, x2, y2 );
1605 if ( ncrossed_change > 0 )
1606 {
1607 i1intersect[ncrossed] = i1;
1608 if ( ncrossed_change == 2 )
1609 {
1610 ;
1611 }
1612 i1intersect[1] = i1;
1613
1614 ncrossed += ncrossed_change;
1615 if ( ncrossed == 2 )
1616 {
1617 // Have discovered the first two crossings for
1618 // polygon 1 at i1 = i1start or above.
1619
1620 // New i1start is the same as the current i1 (just
1621 // in case there are more crossings to find between
1622 // i1m1 and i1.)
1623 i1start_new = i1;
1624
1625 // Split polygon 2 at the boundary consisting of
1626 // first intersection, intervening (if any) range1
1627 // polygon 1 points and second intersection.
1628 // range1 must always be non-negative because i1
1629 // range only traversed once.
1630 range1 = i1intersect[1] - i1intersect[0];
1631 // Polygon 2 intersects could be anywhere (since
1632 // i2 range repeated until get an intersect).
1633 // Divide polygon 2 into two polygons with a
1634 // common boundary consisting of the first intersect,
1635 // range1 points from polygon 1 starting at index
1636 // kkstart1 of polygon 1, and the second intersect.
1637 kkstart1 = i1intersect[0];
1638
1639 // Calculate polygon 2 index range in split 1 (the
1640 // split that proceeds beyond the second intersect with
1641 // ascending i2 values).
1642 range21 = i2intersect[0] - i2intersect[1];
1643 if ( range21 < 0 )
1644 range21 += n2;
1645 // i2 intersect values range between 0 and n2 - 1 so
1646 // the smallest untransformed range21 value is -n2 + 1,
1647 // and the largest untransformed range21 value is n2 - 1.
1648 // This means the smallest transformed range21 value is 0
1649 // (which occurs only ifi2intersect[0] = i2intersect[1],
1650 // see more commentary for that special case below) while
1651 // the largest transformed range21 value is n2 - 1.
1652
1653 if ( range21 == 0 )
1654 {
1655 int ifxsort, ifascend;
1656 // For this case, the two crossings occur within the same
1657 // polygon 2 boundary segment and if those two crossings
1658 // are in ascending/descending order in i2, then split 1
1659 // (the split with the positive fill_status) must include
1660 // all/none of the points in polygon 2.
1661 i2 = i2intersect[1];
1662 i2m1 = i2 - 1;
1663 if ( i2m1 < 0 )
1664 i2m1 += n2;
1665
1666 ifxsort = abs( x2[i2] - x2[i2m1] ) > abs( y2[i2] - y2[i2m1] );
1667 ifascend = ( ifxsort && x2[i2] > x2[i2m1] ) ||
1668 ( !ifxsort && y2[i2] > y2[i2m1] );
1669 if ( ( ifxsort && ifascend && xintersect[0] < xintersect[1] ) ||
1670 ( !ifxsort && ifascend && yintersect[0] < yintersect[1] ) ||
1671 ( ifxsort && !ifascend && xintersect[0] >= xintersect[1] ) ||
1672 ( !ifxsort && !ifascend && yintersect[0] >= yintersect[1] ) )
1673 {
1674 range21 = n2;
1675 }
1676 }
1677
1678 kkstart21 = i2intersect[1];
1679 nsplit1 = 2 + range1 + range21;
1680
1681 // Split 2 of polygon 2 consists of the
1682 // boundary + range22 (= n2 - range21) points
1683 // between kkstart22 (= i2intersect[1]-1) and i2intersect[0] in
1684 // descending order of polygon 2 indices.
1685 range22 = n2 - range21;
1686 // Starting i2 index of split 2.
1687 kkstart22 = i2intersect[1] - 1;
1688 if ( kkstart22 < 0 )
1689 kkstart22 += n2;
1690 nsplit2 = 2 + range1 + range22;
1691
1692 if ( ( xsplit1 = (PLINT *) malloc( (size_t) nsplit1 * sizeof ( PLINT ) ) ) == NULL )
1693 {
1694 plexit( "fill_intersection_polygon: Insufficient memory" );
1695 }
1696 if ( ( ysplit1 = (PLINT *) malloc( (size_t) nsplit1 * sizeof ( PLINT ) ) ) == NULL )
1697 {
1698 plexit( "fill_intersection_polygon: Insufficient memory" );
1699 }
1700 if ( ( ifsplit1 = (PLINT *) malloc( (size_t) nsplit1 * sizeof ( PLINT ) ) ) == NULL )
1701 {
1702 plexit( "fill_intersection_polygon: Insufficient memory" );
1703 }
1704
1705 if ( ( xsplit2 = (PLINT *) malloc( (size_t) nsplit2 * sizeof ( PLINT ) ) ) == NULL )
1706 {
1707 plexit( "fill_intersection_polygon: Insufficient memory" );
1708 }
1709 if ( ( ysplit2 = (PLINT *) malloc( (size_t) nsplit2 * sizeof ( PLINT ) ) ) == NULL )
1710 {
1711 plexit( "fill_intersection_polygon: Insufficient memory" );
1712 }
1713 if ( ( ifsplit2 = (PLINT *) malloc( (size_t) nsplit2 * sizeof ( PLINT ) ) ) == NULL )
1714 {
1715 plexit( "fill_intersection_polygon: Insufficient memory" );
1716 }
1717 // Common boundary between split1 and split2.
1718 // N.B. Although basic index arithmetic for
1719 // split 2 is done in negative orientation
1720 // order because the index is decrementing
1721 // relative to the index of split 2, actually
1722 // store results in reverse order to preserve
1723 // the positive orientation that by assumption
1724 // both polygon 1 and 2 have.
1725 k = 0;
1726 xsplit1[k] = xintersect[0];
1727 ysplit1[k] = yintersect[0];
1728 ifsplit1[k] = 1;
1729 nsplit2m1 = nsplit2 - 1;
1730 xsplit2[nsplit2m1 - k] = xintersect[0];
1731 ysplit2[nsplit2m1 - k] = yintersect[0];
1732 ifsplit2[nsplit2m1 - k] = 1;
1733 kstart = k + 1;
1734 kk = kkstart1;
1735 // No wrap checks on kk index below because
1736 // it must always be in valid range (since
1737 // polygon 1 traversed only once).
1738 for ( k = kstart; k < range1 + 1; k++ )
1739 {
1740 xsplit1[k] = x1[kk];
1741 ysplit1[k] = y1[kk];
1742 ifsplit1[k] = 2;
1743 xsplit2[nsplit2m1 - k] = x1[kk];
1744 ysplit2[nsplit2m1 - k] = y1[kk++];
1745 ifsplit2[nsplit2m1 - k] = 2;
1746 }
1747 xsplit1[k] = xintersect[1];
1748 ysplit1[k] = yintersect[1];
1749 ifsplit1[k] = 1;
1750 xsplit2[nsplit2m1 - k] = xintersect[1];
1751 ysplit2[nsplit2m1 - k] = yintersect[1];
1752 ifsplit2[nsplit2m1 - k] = 1;
1753
1754 // Finish off collecting split1 using ascending kk
1755 // values.
1756 kstart = k + 1;
1757 kk = kkstart21;
1758 for ( k = kstart; k < nsplit1; k++ )
1759 {
1760 xsplit1[k] = x2[kk];
1761 ysplit1[k] = y2[kk];
1762 ifsplit1[k] = if2[kk++];
1763 if ( kk >= n2 )
1764 kk -= n2;
1765 }
1766
1767 // N.B. the positive orientation of split1 is
1768 // preserved since the index order is the same
1769 // as that of polygon 2, and by assumption
1770 // that polygon and polygon 1 have identical
1771 // positive orientations.
1772 fill_intersection_polygon(
1773 recursion_depth + 1, ifextrapolygon, 1, fill,
1774 x1, y1, i1start_new, n1,
1775 xsplit1, ysplit1, ifsplit1, nsplit1 );
1776 free( xsplit1 );
1777 free( ysplit1 );
1778 free( ifsplit1 );
1779
1780 // Finish off collecting split2 using descending kk
1781 // values.
1782 kk = kkstart22;
1783 for ( k = kstart; k < nsplit2; k++ )
1784 {
1785 xsplit2[nsplit2m1 - k] = x2[kk];
1786 ysplit2[nsplit2m1 - k] = y2[kk];
1787 ifsplit2[nsplit2m1 - k] = if2[kk--];
1788 if ( kk < 0 )
1789 kk += n2;
1790 }
1791
1792 // N.B. the positive orientation of split2 is
1793 // preserved since the index order is the same
1794 // as that of polygon 2, and by assumption
1795 // that polygon and polygon 1 have identical
1796 // positive orientations.
1797 fill_intersection_polygon(
1798 recursion_depth + 1, ifextrapolygon, -1, fill,
1799 x1, y1, i1start_new, n1,
1800 xsplit2, ysplit2, ifsplit2, nsplit2 );
1801 free( xsplit2 );
1802 free( ysplit2 );
1803 free( ifsplit2 );
1804 return;
1805 }
1806 }
1807 i1m1 = i1;
1808 }
1809
1810 if ( ncrossed != 0 )
1811 {
1812 plwarn( "fill_intersection_polygon: Internal error; ncrossed != 0." );
1813 return;
1814 }
1815
1816 // This end phase is reached only if no crossings are found.
1817
1818 // If a fill_status of +/- 1 is known, use that to fill or not since
1819 // +1 corresponds to all of polygon 2 inside polygon 1 and -1
1820 // corresponds to none of polygon 2 inside polygon 1.
1821 if ( fill_status == -1 )
1822 return;
1823 else if ( fill_status == 1 )
1824 {
1825 nfill = n2;
1826 xfiller = x2;
1827 yfiller = y2;
1828 }
1829 else if ( fill_status == 0 )
1830 //else if ( 1 )
1831 {
1832 if ( recursion_depth != 0 )
1833 {
1834 plwarn( "fill_intersection_polygon: Internal error; fill_status == 0 for recursion_depth > 0" );
1835 return;
1836 }
1837 // For this case (recursion level 0) the two polygons are
1838 // completely independent with no crossings between them or
1839 // edges constructed from one another.
1840 //
1841 // The intersection of polygon 2 and 1, must be either of them (in
1842 // which case fill with the inner one), or neither of them (in
1843 // which case don't fill at all).
1844
1845 // Classify polygon 1 by looking for first vertex in polygon 1
1846 // that is definitely inside or outside polygon 2.
1847 for ( i1 = 0; i1 < n1; i1++ )
1848 {
1849 if ( ( ifnotpolygon1inpolygon2 =
1850 notpointinpolygon( n2, x2, y2, x1[i1], y1[i1] ) ) != 1 )
1851 break;
1852 }
1853
1854 // Classify polygon 2 by looking for first vertex in polygon 2
1855 // that is definitely inside or outside polygon 1.
1856 ifnotpolygon2inpolygon1 = 1;
1857 for ( i2 = 0; i2 < n2; i2++ )
1858 {
1859 // Do not bother checking vertices already known to be on the
1860 // boundary with polygon 1.
1861 if ( !if2[i2] && ( ifnotpolygon2inpolygon1 =
1862 notpointinpolygon( n1, x1, y1, x2[i2], y2[i2] ) ) != 1 )
1863 break;
1864 }
1865
1866 if ( ifnotpolygon2inpolygon1 == 0 && ifnotpolygon1inpolygon2 == 0 )
1867 plwarn( "fill_intersection_polygon: Internal error; no intersections found but each polygon definitely inside the other!" );
1868 else if ( ifnotpolygon2inpolygon1 == 2 && ifnotpolygon1inpolygon2 == 2 )
1869 // The polygons do not intersect each other so do not fill in this
1870 // case.
1871 return;
1872 else if ( ifnotpolygon2inpolygon1 == 0 )
1873 {
1874 // Polygon 2 definitely inside polygon 1.
1875 nfill = n2;
1876 xfiller = x2;
1877 yfiller = y2;
1878 }
1879 else if ( ifnotpolygon1inpolygon2 == 0 )
1880 {
1881 // Polygon 1 definitely inside polygon 2.
1882 nfill = n1;
1883 xfiller = x1;
1884 yfiller = y1;
1885 }
1886 else if ( ifnotpolygon2inpolygon1 == 1 && ifnotpolygon1inpolygon2 == 1 )
1887 {
1888 // Polygon 2 vertices near polygon 1 border and vice versa which
1889 // implies the polygons are identical.
1890 nfill = n2;
1891 xfiller = x2;
1892 yfiller = y2;
1893 }
1894 else
1895 {
1896 // Polygon 1 inscribed in polygon 2 or vice versa. This is normally
1897 // unlikely for two independent polygons so the implementation is
1898 // ToDo.
1899 plwarn( "fill_intersection_polygon: inscribed polygons are still ToDo" );
1900 }
1901 }
1902
1903 if ( nfill > 0 )
1904 {
1905 if ( ( xfill = (short *) malloc( (size_t) nfill * sizeof ( short ) ) ) == NULL )
1906 {
1907 plexit( "fill_intersection_polygon: Insufficient memory" );
1908 }
1909 if ( ( yfill = (short *) malloc( (size_t) nfill * sizeof ( short ) ) ) == NULL )
1910 {
1911 plexit( "fill_intersection_polygon: Insufficient memory" );
1912 }
1913 for ( ifill = 0; ifill < nfill; ifill++ )
1914 {
1915 xfill[ifill] = (short) xfiller[ifill];
1916 yfill[ifill] = (short) yfiller[ifill];
1917 }
1918 ( *fill )( xfill, yfill, nfill );
1919 free( xfill );
1920 free( yfill );
1921 }
1922
1923 return;
1924 }
1925 #endif
1926
1927 // Returns a 0 status code
1928 // if the two line segments A, and B defined
1929 // by their end points (xA1, yA1, xA2, yA2, xB1, yB1, xB2, and yB2)
1930 // definitely (i.e., intersection point is not near the ends of either
1931 // of the line segments) cross each other. Otherwise, return a status
1932 // code specifying the type of non-crossing (i.e., completely
1933 // separate, near one of the ends, parallel).
1934 // Only if status = 0, return the actual
1935 // intersection via the argument list pointers to
1936 // xintersect and yintersect.
1937
1938 int
notcrossed(PLINT * xintersect,PLINT * yintersect,PLINT xA1,PLINT yA1,PLINT xA2,PLINT yA2,PLINT xB1,PLINT yB1,PLINT xB2,PLINT yB2)1939 notcrossed( PLINT * xintersect, PLINT * yintersect,
1940 PLINT xA1, PLINT yA1, PLINT xA2, PLINT yA2,
1941 PLINT xB1, PLINT yB1, PLINT xB2, PLINT yB2 )
1942 {
1943 PLFLT factor, factor_NBCC, fxintersect, fyintersect;
1944 // These variables are PLFLT not for precision, but to
1945 // avoid integer overflows if they were typed as PLINT.
1946 PLFLT xA2A1, yA2A1, xB2B1, yB2B1;
1947 PLFLT xB1A1, yB1A1, xB2A1, yB2A1;
1948 PLINT status = 0;
1949 //
1950 // Two linear equations to be solved for x and y.
1951 // y = ((x - xA1)*yA2 + (xA2 - x)*yA1)/(xA2 - xA1)
1952 // y = ((x - xB1)*yB2 + (xB2 - x)*yB1)/(xB2 - xB1)
1953 //
1954 // Transform those two equations to coordinate system with origin
1955 // at (xA1, yA1).
1956 // y' = x'*yA2A1/xA2A1
1957 // y' = ((x' - xB1A1)*yB2A1 + (xB2A1 - x')*yB1A1)/xB2B1
1958 // ==>
1959 // x' = -(
1960 // (-xB1A1*yB2A1 + xB2A1*yB1A1)/xB2B1)/
1961 // (yB2B1/xB2B1 - yA2A1/xA2A1)
1962 // = (xB1A1*yB2A1 - xB2A1*yB1A1)*xA2A1/
1963 // (xA2A1*yB2B1 - yA2A1*xB2B1)
1964 //
1965 //
1966
1967 xA2A1 = xA2 - xA1;
1968 yA2A1 = yA2 - yA1;
1969 xB2B1 = xB2 - xB1;
1970 yB2B1 = yB2 - yB1;
1971
1972 factor = xA2A1 * yB2B1 - yA2A1 * xB2B1;
1973 factor_NBCC = PL_NBCC * ( fabs( xA2A1 ) + fabs( yB2B1 ) + fabs( yA2A1 ) + fabs( xB2B1 ) );
1974 if ( fabs( factor ) <= factor_NBCC )
1975 {
1976 if ( fabs( factor ) > 0. )
1977 status = status | PL_NEAR_PARALLEL;
1978 else
1979 status = status | PL_PARALLEL;
1980 }
1981 else
1982 {
1983 xB1A1 = xB1 - xA1;
1984 yB1A1 = yB1 - yA1;
1985 xB2A1 = xB2 - xA1;
1986 yB2A1 = yB2 - yA1;
1987
1988 factor = ( xB1A1 * yB2A1 - yB1A1 * xB2A1 ) / factor;
1989 fxintersect = factor * xA2A1 + xA1;
1990 fyintersect = factor * yA2A1 + yA1;
1991 // The "redundant" x and y segment range checks (which include near the
1992 // end points) are needed for the vertical and the horizontal cases.
1993 if ( ( BETW_NBCC( fxintersect, xA1, xA2 ) && BETW_NBCC( fyintersect, yA1, yA2 ) ) &&
1994 ( BETW_NBCC( fxintersect, xB1, xB2 ) && BETW_NBCC( fyintersect, yB1, yB2 ) ) )
1995 {
1996 // The intersect is close (within +/- PL_NBCC) to an end point or
1997 // corresponds to a definite crossing of the two line segments.
1998 // Find out which.
1999 if ( fabs( fxintersect - xA1 ) <= PL_NBCC && fabs( fyintersect - yA1 ) <= PL_NBCC )
2000 status = status | PL_NEAR_A1;
2001 else if ( fabs( fxintersect - xA2 ) <= PL_NBCC && fabs( fyintersect - yA2 ) <= PL_NBCC )
2002 status = status | PL_NEAR_A2;
2003 else if ( fabs( fxintersect - xB1 ) <= PL_NBCC && fabs( fyintersect - yB1 ) <= PL_NBCC )
2004 status = status | PL_NEAR_B1;
2005 else if ( fabs( fxintersect - xB2 ) <= PL_NBCC && fabs( fyintersect - yB2 ) <= PL_NBCC )
2006 status = status | PL_NEAR_B2;
2007 // N.B. if none of the above conditions hold then status remains at
2008 // zero to signal we have a definite crossing.
2009 }
2010 else
2011 status = status | PL_NOT_CROSSED;
2012 }
2013 if ( !status )
2014 {
2015 *xintersect = (PLINT) fxintersect;
2016 *yintersect = (PLINT) fyintersect;
2017 }
2018
2019 return status;
2020 }
2021
2022 #ifdef USE_FILL_INTERSECTION_POLYGON
2023 // Decide if polygon has a positive orientation or not.
2024 // Note the simple algorithm given in
2025 // http://en.wikipedia.org/wiki/Curve_orientation is incorrect for
2026 // non-convex polygons. Instead, for the general nonintersecting case
2027 // use the polygon area method given by
2028 // http://local.wasp.uwa.edu.au/~pbourke/geometry/polyarea/ where
2029 // you project each edge of the polygon down to the X axis and take the
2030 // area of the enclosed trapezoid. The trapezoid areas outside the
2031 // polygon are completely cancelled if you sum over all edges. Furthermore,
2032 // the sum of the trapezoid areas have terms which are zero when calculated
2033 // with the telescoping rule so the final formula is quite simple.
2034 int
positive_orientation(PLINT n,PLINT_VECTOR x,PLINT_VECTOR y)2035 positive_orientation( PLINT n, PLINT_VECTOR x, PLINT_VECTOR y )
2036 {
2037 PLINT i, im1;
2038 // Use PLFLT for all calculations to avoid integer overflows. Also,
2039 // the normal PLFLT has 64-bits which means you get exact integer
2040 // arithmetic well beyond the normal integer overflow limits.
2041 PLFLT twice_area = 0.;
2042 if ( n < 3 )
2043 {
2044 plwarn( "positive_orientation: internal logic error, n < 3" );
2045 return 0;
2046 }
2047 im1 = n - 1;
2048 for ( i = 0; i < n; i++ )
2049 {
2050 twice_area += (PLFLT) x[im1] * (PLFLT) y[i] - (PLFLT) x[i] * (PLFLT) y[im1];
2051 im1 = i;
2052 }
2053 if ( twice_area == 0. )
2054 {
2055 plwarn( "positive_orientation: internal logic error, twice_area == 0." );
2056 return 0;
2057 }
2058 else
2059 return twice_area > 0.;
2060 }
2061
2062 // For the line with endpoints which are the (i1-1)th, and i1th
2063 // vertices of polygon 1 with polygon 2 find all definite crossings
2064 // with polygon 1. (The full polygon 1 information is needed only to
2065 // help sort out (NOT IMPLEMENTED YET) ambiguous crossings near a
2066 // vertex of polygon 1.) Sort those definite crossings in ascending
2067 // order along the line between the (i1-1)th and i1th vertices of
2068 // polygon 1, and return the first ncross (= 1 or = 2) crossings in the
2069 // xcross, ycross, and i2cross arrays. Return a zero or positive
2070 // status code of the actual number of crossings retained up to the
2071 // maximum allowed value of ncross. If some error occurred, return a
2072 // negative status code.
2073
2074 int
number_crossings(PLINT * xcross,PLINT * ycross,PLINT * i2cross,PLINT ncross,PLINT i1,PLINT n1,PLINT_VECTOR x1,PLINT_VECTOR y1,PLINT n2,PLINT_VECTOR x2,PLINT_VECTOR y2)2075 number_crossings( PLINT *xcross, PLINT *ycross, PLINT *i2cross, PLINT ncross,
2076 PLINT i1, PLINT n1, PLINT_VECTOR x1, PLINT_VECTOR y1,
2077 PLINT n2, PLINT_VECTOR x2, PLINT_VECTOR y2 )
2078 {
2079 int i1m1, i2, i2m1, ifnotcrossed;
2080 int ifxsort, ifascend, count_crossings = 0, status = 0;
2081 PLINT xintersect, yintersect;
2082
2083 i1m1 = i1 - 1;
2084 if ( i1m1 < 0 )
2085 i1m1 += n1;
2086 if ( !( ncross == 1 || ncross == 2 ) ||
2087 ( x1[i1m1] == x1[i1] && y1[i1m1] == y1[i1] ) || n1 < 2 || n2 < 2 )
2088 {
2089 plwarn( "findcrossings: invalid call" );
2090 return -1;
2091 }
2092
2093 ifxsort = abs( x1[i1] - x1[i1m1] ) > abs( y1[i1] - y1[i1m1] );
2094 ifascend = ( ifxsort && x1[i1] > x1[i1m1] ) ||
2095 ( !ifxsort && y1[i1] > y1[i1m1] );
2096
2097 // Determine all crossings between the line between the (i1-1)th
2098 // and i1th vertices of polygon 1 and all edges of polygon 2.
2099 // Retain the lowest and (if ncross ==2) next lowest crossings in
2100 // order of x (or y if ifxsort is false) along the line from i1-1
2101 // to i1.
2102
2103 i1m1 = i1 - 1;
2104 if ( i1m1 < 0 )
2105 i1m1 += n1;
2106 i2m1 = n2 - 1;
2107 for ( i2 = 0; i2 < n2; i2++ )
2108 {
2109 if ( !( x2[i2m1] == x2[i2] && y2[i2m1] == y2[i2] ) )
2110 {
2111 ifnotcrossed = notcrossed( &xintersect, &yintersect,
2112 x1[i1m1], y1[i1m1], x1[i1], y1[i1],
2113 x2[i2m1], y2[i2m1], x2[i2], y2[i2] );
2114
2115 if ( !ifnotcrossed )
2116 {
2117 count_crossings++;
2118 if ( count_crossings == 1 )
2119 {
2120 xcross[0] = xintersect;
2121 ycross[0] = yintersect;
2122 i2cross[0] = i2;
2123 status = 1;
2124 }
2125 else
2126 {
2127 if ( ( ifxsort && ifascend && xintersect < xcross[0] ) ||
2128 ( !ifxsort && ifascend && yintersect < ycross[0] ) ||
2129 ( ifxsort && !ifascend && xintersect >= xcross[0] ) ||
2130 ( !ifxsort && !ifascend && yintersect >= ycross[0] ) )
2131 {
2132 if ( ncross == 2 )
2133 {
2134 xcross[1] = xcross[0];
2135 ycross[1] = ycross[0];
2136 i2cross[1] = i2cross[0];
2137 status = 2;
2138 }
2139 xcross[0] = xintersect;
2140 ycross[0] = yintersect;
2141 i2cross[0] = i2;
2142 }
2143 else if ( ncross == 2 && ( count_crossings == 2 || (
2144 ( ifxsort && ifascend && xintersect < xcross[1] ) ||
2145 ( !ifxsort && ifascend && yintersect < ycross[1] ) ||
2146 ( ifxsort && !ifascend && xintersect >= xcross[1] ) ||
2147 ( !ifxsort && !ifascend && yintersect >= ycross[1] ) ) ) )
2148 {
2149 xcross[1] = xintersect;
2150 ycross[1] = yintersect;
2151 i2cross[1] = i2;
2152 status = 2;
2153 }
2154 }
2155 }
2156 }
2157 i2m1 = i2;
2158 }
2159 return status;
2160 }
2161 #endif
2162