1 /**********************************************************************
2  * Copyright (c) 2014 Pieter Wuille                                   *
3  * Distributed under the MIT software license, see the accompanying   *
4  * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
5  **********************************************************************/
6 
7 #ifndef _SECP256K1_SCALAR_IMPL_H_
8 #define _SECP256K1_SCALAR_IMPL_H_
9 
10 #include "group.h"
11 #include "scalar.h"
12 
13 #if defined HAVE_CONFIG_H
14 #include "libsecp256k1-config.h"
15 #endif
16 
17 #if defined(USE_SCALAR_4X64)
18 #include "scalar_4x64_impl.h"
19 #elif defined(USE_SCALAR_8X32)
20 #include "scalar_8x32_impl.h"
21 #else
22 #error "Please select scalar implementation"
23 #endif
24 
25 #ifndef USE_NUM_NONE
secp256k1_scalar_get_num(secp256k1_num * r,const secp256k1_scalar * a)26 static void secp256k1_scalar_get_num(secp256k1_num *r, const secp256k1_scalar *a) {
27     unsigned char c[32];
28     secp256k1_scalar_get_b32(c, a);
29     secp256k1_num_set_bin(r, c, 32);
30 }
31 
32 /** secp256k1 curve order, see secp256k1_ecdsa_const_order_as_fe in ecdsa_impl.h */
secp256k1_scalar_order_get_num(secp256k1_num * r)33 static void secp256k1_scalar_order_get_num(secp256k1_num *r) {
34     static const unsigned char order[32] = {
35         0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
36         0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,
37         0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,
38         0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x41
39     };
40     secp256k1_num_set_bin(r, order, 32);
41 }
42 #endif
43 
secp256k1_scalar_inverse(secp256k1_scalar * r,const secp256k1_scalar * x)44 static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *x) {
45     secp256k1_scalar *t;
46     int i;
47     /* First compute x ^ (2^N - 1) for some values of N. */
48     secp256k1_scalar x2, x3, x4, x6, x7, x8, x15, x30, x60, x120, x127;
49 
50     secp256k1_scalar_sqr(&x2,  x);
51     secp256k1_scalar_mul(&x2, &x2,  x);
52 
53     secp256k1_scalar_sqr(&x3, &x2);
54     secp256k1_scalar_mul(&x3, &x3,  x);
55 
56     secp256k1_scalar_sqr(&x4, &x3);
57     secp256k1_scalar_mul(&x4, &x4,  x);
58 
59     secp256k1_scalar_sqr(&x6, &x4);
60     secp256k1_scalar_sqr(&x6, &x6);
61     secp256k1_scalar_mul(&x6, &x6, &x2);
62 
63     secp256k1_scalar_sqr(&x7, &x6);
64     secp256k1_scalar_mul(&x7, &x7,  x);
65 
66     secp256k1_scalar_sqr(&x8, &x7);
67     secp256k1_scalar_mul(&x8, &x8,  x);
68 
69     secp256k1_scalar_sqr(&x15, &x8);
70     for (i = 0; i < 6; i++) {
71         secp256k1_scalar_sqr(&x15, &x15);
72     }
73     secp256k1_scalar_mul(&x15, &x15, &x7);
74 
75     secp256k1_scalar_sqr(&x30, &x15);
76     for (i = 0; i < 14; i++) {
77         secp256k1_scalar_sqr(&x30, &x30);
78     }
79     secp256k1_scalar_mul(&x30, &x30, &x15);
80 
81     secp256k1_scalar_sqr(&x60, &x30);
82     for (i = 0; i < 29; i++) {
83         secp256k1_scalar_sqr(&x60, &x60);
84     }
85     secp256k1_scalar_mul(&x60, &x60, &x30);
86 
87     secp256k1_scalar_sqr(&x120, &x60);
88     for (i = 0; i < 59; i++) {
89         secp256k1_scalar_sqr(&x120, &x120);
90     }
91     secp256k1_scalar_mul(&x120, &x120, &x60);
92 
93     secp256k1_scalar_sqr(&x127, &x120);
94     for (i = 0; i < 6; i++) {
95         secp256k1_scalar_sqr(&x127, &x127);
96     }
97     secp256k1_scalar_mul(&x127, &x127, &x7);
98 
99     /* Then accumulate the final result (t starts at x127). */
100     t = &x127;
101     for (i = 0; i < 2; i++) { /* 0 */
102         secp256k1_scalar_sqr(t, t);
103     }
104     secp256k1_scalar_mul(t, t, x); /* 1 */
105     for (i = 0; i < 4; i++) { /* 0 */
106         secp256k1_scalar_sqr(t, t);
107     }
108     secp256k1_scalar_mul(t, t, &x3); /* 111 */
109     for (i = 0; i < 2; i++) { /* 0 */
110         secp256k1_scalar_sqr(t, t);
111     }
112     secp256k1_scalar_mul(t, t, x); /* 1 */
113     for (i = 0; i < 2; i++) { /* 0 */
114         secp256k1_scalar_sqr(t, t);
115     }
116     secp256k1_scalar_mul(t, t, x); /* 1 */
117     for (i = 0; i < 2; i++) { /* 0 */
118         secp256k1_scalar_sqr(t, t);
119     }
120     secp256k1_scalar_mul(t, t, x); /* 1 */
121     for (i = 0; i < 4; i++) { /* 0 */
122         secp256k1_scalar_sqr(t, t);
123     }
124     secp256k1_scalar_mul(t, t, &x3); /* 111 */
125     for (i = 0; i < 3; i++) { /* 0 */
126         secp256k1_scalar_sqr(t, t);
127     }
128     secp256k1_scalar_mul(t, t, &x2); /* 11 */
129     for (i = 0; i < 4; i++) { /* 0 */
130         secp256k1_scalar_sqr(t, t);
131     }
132     secp256k1_scalar_mul(t, t, &x3); /* 111 */
133     for (i = 0; i < 5; i++) { /* 00 */
134         secp256k1_scalar_sqr(t, t);
135     }
136     secp256k1_scalar_mul(t, t, &x3); /* 111 */
137     for (i = 0; i < 4; i++) { /* 00 */
138         secp256k1_scalar_sqr(t, t);
139     }
140     secp256k1_scalar_mul(t, t, &x2); /* 11 */
141     for (i = 0; i < 2; i++) { /* 0 */
142         secp256k1_scalar_sqr(t, t);
143     }
144     secp256k1_scalar_mul(t, t, x); /* 1 */
145     for (i = 0; i < 2; i++) { /* 0 */
146         secp256k1_scalar_sqr(t, t);
147     }
148     secp256k1_scalar_mul(t, t, x); /* 1 */
149     for (i = 0; i < 5; i++) { /* 0 */
150         secp256k1_scalar_sqr(t, t);
151     }
152     secp256k1_scalar_mul(t, t, &x4); /* 1111 */
153     for (i = 0; i < 2; i++) { /* 0 */
154         secp256k1_scalar_sqr(t, t);
155     }
156     secp256k1_scalar_mul(t, t, x); /* 1 */
157     for (i = 0; i < 3; i++) { /* 00 */
158         secp256k1_scalar_sqr(t, t);
159     }
160     secp256k1_scalar_mul(t, t, x); /* 1 */
161     for (i = 0; i < 4; i++) { /* 000 */
162         secp256k1_scalar_sqr(t, t);
163     }
164     secp256k1_scalar_mul(t, t, x); /* 1 */
165     for (i = 0; i < 2; i++) { /* 0 */
166         secp256k1_scalar_sqr(t, t);
167     }
168     secp256k1_scalar_mul(t, t, x); /* 1 */
169     for (i = 0; i < 10; i++) { /* 0000000 */
170         secp256k1_scalar_sqr(t, t);
171     }
172     secp256k1_scalar_mul(t, t, &x3); /* 111 */
173     for (i = 0; i < 4; i++) { /* 0 */
174         secp256k1_scalar_sqr(t, t);
175     }
176     secp256k1_scalar_mul(t, t, &x3); /* 111 */
177     for (i = 0; i < 9; i++) { /* 0 */
178         secp256k1_scalar_sqr(t, t);
179     }
180     secp256k1_scalar_mul(t, t, &x8); /* 11111111 */
181     for (i = 0; i < 2; i++) { /* 0 */
182         secp256k1_scalar_sqr(t, t);
183     }
184     secp256k1_scalar_mul(t, t, x); /* 1 */
185     for (i = 0; i < 3; i++) { /* 00 */
186         secp256k1_scalar_sqr(t, t);
187     }
188     secp256k1_scalar_mul(t, t, x); /* 1 */
189     for (i = 0; i < 3; i++) { /* 00 */
190         secp256k1_scalar_sqr(t, t);
191     }
192     secp256k1_scalar_mul(t, t, x); /* 1 */
193     for (i = 0; i < 5; i++) { /* 0 */
194         secp256k1_scalar_sqr(t, t);
195     }
196     secp256k1_scalar_mul(t, t, &x4); /* 1111 */
197     for (i = 0; i < 2; i++) { /* 0 */
198         secp256k1_scalar_sqr(t, t);
199     }
200     secp256k1_scalar_mul(t, t, x); /* 1 */
201     for (i = 0; i < 5; i++) { /* 000 */
202         secp256k1_scalar_sqr(t, t);
203     }
204     secp256k1_scalar_mul(t, t, &x2); /* 11 */
205     for (i = 0; i < 4; i++) { /* 00 */
206         secp256k1_scalar_sqr(t, t);
207     }
208     secp256k1_scalar_mul(t, t, &x2); /* 11 */
209     for (i = 0; i < 2; i++) { /* 0 */
210         secp256k1_scalar_sqr(t, t);
211     }
212     secp256k1_scalar_mul(t, t, x); /* 1 */
213     for (i = 0; i < 8; i++) { /* 000000 */
214         secp256k1_scalar_sqr(t, t);
215     }
216     secp256k1_scalar_mul(t, t, &x2); /* 11 */
217     for (i = 0; i < 3; i++) { /* 0 */
218         secp256k1_scalar_sqr(t, t);
219     }
220     secp256k1_scalar_mul(t, t, &x2); /* 11 */
221     for (i = 0; i < 3; i++) { /* 00 */
222         secp256k1_scalar_sqr(t, t);
223     }
224     secp256k1_scalar_mul(t, t, x); /* 1 */
225     for (i = 0; i < 6; i++) { /* 00000 */
226         secp256k1_scalar_sqr(t, t);
227     }
228     secp256k1_scalar_mul(t, t, x); /* 1 */
229     for (i = 0; i < 8; i++) { /* 00 */
230         secp256k1_scalar_sqr(t, t);
231     }
232     secp256k1_scalar_mul(r, t, &x6); /* 111111 */
233 }
234 
secp256k1_scalar_is_even(const secp256k1_scalar * a)235 SECP256K1_INLINE static int secp256k1_scalar_is_even(const secp256k1_scalar *a) {
236     /* d[0] is present and is the lowest word for all representations */
237     return !(a->d[0] & 1);
238 }
239 
secp256k1_scalar_inverse_var(secp256k1_scalar * r,const secp256k1_scalar * x)240 static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *x) {
241 #if defined(USE_SCALAR_INV_BUILTIN)
242     secp256k1_scalar_inverse(r, x);
243 #elif defined(USE_SCALAR_INV_NUM)
244     unsigned char b[32];
245     secp256k1_num n, m;
246     secp256k1_scalar t = *x;
247     secp256k1_scalar_get_b32(b, &t);
248     secp256k1_num_set_bin(&n, b, 32);
249     secp256k1_scalar_order_get_num(&m);
250     secp256k1_num_mod_inverse(&n, &n, &m);
251     secp256k1_num_get_bin(b, 32, &n);
252     secp256k1_scalar_set_b32(r, b, NULL);
253     /* Verify that the inverse was computed correctly, without GMP code. */
254     secp256k1_scalar_mul(&t, &t, r);
255     CHECK(secp256k1_scalar_is_one(&t));
256 #else
257 #error "Please select scalar inverse implementation"
258 #endif
259 }
260 
261 #ifdef USE_ENDOMORPHISM
262 /**
263  * The Secp256k1 curve has an endomorphism, where lambda * (x, y) = (beta * x, y), where
264  * lambda is {0x53,0x63,0xad,0x4c,0xc0,0x5c,0x30,0xe0,0xa5,0x26,0x1c,0x02,0x88,0x12,0x64,0x5a,
265  *            0x12,0x2e,0x22,0xea,0x20,0x81,0x66,0x78,0xdf,0x02,0x96,0x7c,0x1b,0x23,0xbd,0x72}
266  *
267  * "Guide to Elliptic Curve Cryptography" (Hankerson, Menezes, Vanstone) gives an algorithm
268  * (algorithm 3.74) to find k1 and k2 given k, such that k1 + k2 * lambda == k mod n, and k1
269  * and k2 have a small size.
270  * It relies on constants a1, b1, a2, b2. These constants for the value of lambda above are:
271  *
272  * - a1 =      {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15}
273  * - b1 =     -{0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28,0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3}
274  * - a2 = {0x01,0x14,0xca,0x50,0xf7,0xa8,0xe2,0xf3,0xf6,0x57,0xc1,0x10,0x8d,0x9d,0x44,0xcf,0xd8}
275  * - b2 =      {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15}
276  *
277  * The algorithm then computes c1 = round(b1 * k / n) and c2 = round(b2 * k / n), and gives
278  * k1 = k - (c1*a1 + c2*a2) and k2 = -(c1*b1 + c2*b2). Instead, we use modular arithmetic, and
279  * compute k1 as k - k2 * lambda, avoiding the need for constants a1 and a2.
280  *
281  * g1, g2 are precomputed constants used to replace division with a rounded multiplication
282  * when decomposing the scalar for an endomorphism-based point multiplication.
283  *
284  * The possibility of using precomputed estimates is mentioned in "Guide to Elliptic Curve
285  * Cryptography" (Hankerson, Menezes, Vanstone) in section 3.5.
286  *
287  * The derivation is described in the paper "Efficient Software Implementation of Public-Key
288  * Cryptography on Sensor Networks Using the MSP430X Microcontroller" (Gouvea, Oliveira, Lopez),
289  * Section 4.3 (here we use a somewhat higher-precision estimate):
290  * d = a1*b2 - b1*a2
291  * g1 = round((2^272)*b2/d)
292  * g2 = round((2^272)*b1/d)
293  *
294  * (Note that 'd' is also equal to the curve order here because [a1,b1] and [a2,b2] are found
295  * as outputs of the Extended Euclidean Algorithm on inputs 'order' and 'lambda').
296  *
297  * The function below splits a in r1 and r2, such that r1 + lambda * r2 == a (mod order).
298  */
299 
secp256k1_scalar_split_lambda(secp256k1_scalar * r1,secp256k1_scalar * r2,const secp256k1_scalar * a)300 static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) {
301     secp256k1_scalar c1, c2;
302     static const secp256k1_scalar minus_lambda = SECP256K1_SCALAR_CONST(
303         0xAC9C52B3UL, 0x3FA3CF1FUL, 0x5AD9E3FDUL, 0x77ED9BA4UL,
304         0xA880B9FCUL, 0x8EC739C2UL, 0xE0CFC810UL, 0xB51283CFUL
305     );
306     static const secp256k1_scalar minus_b1 = SECP256K1_SCALAR_CONST(
307         0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00000000UL,
308         0xE4437ED6UL, 0x010E8828UL, 0x6F547FA9UL, 0x0ABFE4C3UL
309     );
310     static const secp256k1_scalar minus_b2 = SECP256K1_SCALAR_CONST(
311         0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL,
312         0x8A280AC5UL, 0x0774346DUL, 0xD765CDA8UL, 0x3DB1562CUL
313     );
314     static const secp256k1_scalar g1 = SECP256K1_SCALAR_CONST(
315         0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00003086UL,
316         0xD221A7D4UL, 0x6BCDE86CUL, 0x90E49284UL, 0xEB153DABUL
317     );
318     static const secp256k1_scalar g2 = SECP256K1_SCALAR_CONST(
319         0x00000000UL, 0x00000000UL, 0x00000000UL, 0x0000E443UL,
320         0x7ED6010EUL, 0x88286F54UL, 0x7FA90ABFUL, 0xE4C42212UL
321     );
322     VERIFY_CHECK(r1 != a);
323     VERIFY_CHECK(r2 != a);
324     /* these _var calls are constant time since the shift amount is constant */
325     secp256k1_scalar_mul_shift_var(&c1, a, &g1, 272);
326     secp256k1_scalar_mul_shift_var(&c2, a, &g2, 272);
327     secp256k1_scalar_mul(&c1, &c1, &minus_b1);
328     secp256k1_scalar_mul(&c2, &c2, &minus_b2);
329     secp256k1_scalar_add(r2, &c1, &c2);
330     secp256k1_scalar_mul(r1, r2, &minus_lambda);
331     secp256k1_scalar_add(r1, r1, a);
332 }
333 #endif
334 
335 #endif
336