1"""Tests for Gosper's algorithm for hypergeometric summation. """
2
3from sympy import binomial, factorial, gamma, Poly, S, simplify, sqrt, exp, \
4    log, Symbol, pi, Rational
5from sympy.abc import a, b, j, k, m, n, r, x
6from sympy.concrete.gosper import gosper_normal, gosper_sum, gosper_term
7
8
9def test_gosper_normal():
10    eq = 4*n + 5, 2*(4*n + 1)*(2*n + 3), n
11    assert gosper_normal(*eq) == \
12        (Poly(Rational(1, 4), n), Poly(n + Rational(3, 2)), Poly(n + Rational(1, 4)))
13    assert gosper_normal(*eq, polys=False) == \
14        (Rational(1, 4), n + Rational(3, 2), n + Rational(1, 4))
15
16
17def test_gosper_term():
18    assert gosper_term((4*k + 1)*factorial(
19        k)/factorial(2*k + 1), k) == (-k - S.Half)/(k + Rational(1, 4))
20
21
22def test_gosper_sum():
23    assert gosper_sum(1, (k, 0, n)) == 1 + n
24    assert gosper_sum(k, (k, 0, n)) == n*(1 + n)/2
25    assert gosper_sum(k**2, (k, 0, n)) == n*(1 + n)*(1 + 2*n)/6
26    assert gosper_sum(k**3, (k, 0, n)) == n**2*(1 + n)**2/4
27
28    assert gosper_sum(2**k, (k, 0, n)) == 2*2**n - 1
29
30    assert gosper_sum(factorial(k), (k, 0, n)) is None
31    assert gosper_sum(binomial(n, k), (k, 0, n)) is None
32
33    assert gosper_sum(factorial(k)/k**2, (k, 0, n)) is None
34    assert gosper_sum((k - 3)*factorial(k), (k, 0, n)) is None
35
36    assert gosper_sum(k*factorial(k), k) == factorial(k)
37    assert gosper_sum(
38        k*factorial(k), (k, 0, n)) == n*factorial(n) + factorial(n) - 1
39
40    assert gosper_sum((-1)**k*binomial(n, k), (k, 0, n)) == 0
41    assert gosper_sum((
42        -1)**k*binomial(n, k), (k, 0, m)) == -(-1)**m*(m - n)*binomial(n, m)/n
43
44    assert gosper_sum((4*k + 1)*factorial(k)/factorial(2*k + 1), (k, 0, n)) == \
45        (2*factorial(2*n + 1) - factorial(n))/factorial(2*n + 1)
46
47    # issue 6033:
48    assert gosper_sum(
49        n*(n + a + b)*a**n*b**n/(factorial(n + a)*factorial(n + b)), \
50        (n, 0, m)).simplify() == -exp(m*log(a) + m*log(b))*gamma(a + 1) \
51        *gamma(b + 1)/(gamma(a)*gamma(b)*gamma(a + m + 1)*gamma(b + m + 1)) \
52        + 1/(gamma(a)*gamma(b))
53
54
55def test_gosper_sum_indefinite():
56    assert gosper_sum(k, k) == k*(k - 1)/2
57    assert gosper_sum(k**2, k) == k*(k - 1)*(2*k - 1)/6
58
59    assert gosper_sum(1/(k*(k + 1)), k) == -1/k
60    assert gosper_sum(-(27*k**4 + 158*k**3 + 430*k**2 + 678*k + 445)*gamma(2*k
61                      + 4)/(3*(3*k + 7)*gamma(3*k + 6)), k) == \
62        (3*k + 5)*(k**2 + 2*k + 5)*gamma(2*k + 4)/gamma(3*k + 6)
63
64
65def test_gosper_sum_parametric():
66    assert gosper_sum(binomial(S.Half, m - j + 1)*binomial(S.Half, m + j), (j, 1, n)) == \
67        n*(1 + m - n)*(-1 + 2*m + 2*n)*binomial(S.Half, 1 + m - n)* \
68        binomial(S.Half, m + n)/(m*(1 + 2*m))
69
70
71def test_gosper_sum_algebraic():
72    assert gosper_sum(
73        n**2 + sqrt(2), (n, 0, m)) == (m + 1)*(2*m**2 + m + 6*sqrt(2))/6
74
75
76def test_gosper_sum_iterated():
77    f1 = binomial(2*k, k)/4**k
78    f2 = (1 + 2*n)*binomial(2*n, n)/4**n
79    f3 = (1 + 2*n)*(3 + 2*n)*binomial(2*n, n)/(3*4**n)
80    f4 = (1 + 2*n)*(3 + 2*n)*(5 + 2*n)*binomial(2*n, n)/(15*4**n)
81    f5 = (1 + 2*n)*(3 + 2*n)*(5 + 2*n)*(7 + 2*n)*binomial(2*n, n)/(105*4**n)
82
83    assert gosper_sum(f1, (k, 0, n)) == f2
84    assert gosper_sum(f2, (n, 0, n)) == f3
85    assert gosper_sum(f3, (n, 0, n)) == f4
86    assert gosper_sum(f4, (n, 0, n)) == f5
87
88# the AeqB tests test expressions given in
89# www.math.upenn.edu/~wilf/AeqB.pdf
90
91
92def test_gosper_sum_AeqB_part1():
93    f1a = n**4
94    f1b = n**3*2**n
95    f1c = 1/(n**2 + sqrt(5)*n - 1)
96    f1d = n**4*4**n/binomial(2*n, n)
97    f1e = factorial(3*n)/(factorial(n)*factorial(n + 1)*factorial(n + 2)*27**n)
98    f1f = binomial(2*n, n)**2/((n + 1)*4**(2*n))
99    f1g = (4*n - 1)*binomial(2*n, n)**2/((2*n - 1)**2*4**(2*n))
100    f1h = n*factorial(n - S.Half)**2/factorial(n + 1)**2
101
102    g1a = m*(m + 1)*(2*m + 1)*(3*m**2 + 3*m - 1)/30
103    g1b = 26 + 2**(m + 1)*(m**3 - 3*m**2 + 9*m - 13)
104    g1c = (m + 1)*(m*(m**2 - 7*m + 3)*sqrt(5) - (
105        3*m**3 - 7*m**2 + 19*m - 6))/(2*m**3*sqrt(5) + m**4 + 5*m**2 - 1)/6
106    g1d = Rational(-2, 231) + 2*4**m*(m + 1)*(63*m**4 + 112*m**3 + 18*m**2 -
107             22*m + 3)/(693*binomial(2*m, m))
108    g1e = Rational(-9, 2) + (81*m**2 + 261*m + 200)*factorial(
109        3*m + 2)/(40*27**m*factorial(m)*factorial(m + 1)*factorial(m + 2))
110    g1f = (2*m + 1)**2*binomial(2*m, m)**2/(4**(2*m)*(m + 1))
111    g1g = -binomial(2*m, m)**2/4**(2*m)
112    g1h = 4*pi -(2*m + 1)**2*(3*m + 4)*factorial(m - S.Half)**2/factorial(m + 1)**2
113
114    g = gosper_sum(f1a, (n, 0, m))
115    assert g is not None and simplify(g - g1a) == 0
116    g = gosper_sum(f1b, (n, 0, m))
117    assert g is not None and simplify(g - g1b) == 0
118    g = gosper_sum(f1c, (n, 0, m))
119    assert g is not None and simplify(g - g1c) == 0
120    g = gosper_sum(f1d, (n, 0, m))
121    assert g is not None and simplify(g - g1d) == 0
122    g = gosper_sum(f1e, (n, 0, m))
123    assert g is not None and simplify(g - g1e) == 0
124    g = gosper_sum(f1f, (n, 0, m))
125    assert g is not None and simplify(g - g1f) == 0
126    g = gosper_sum(f1g, (n, 0, m))
127    assert g is not None and simplify(g - g1g) == 0
128    g = gosper_sum(f1h, (n, 0, m))
129    # need to call rewrite(gamma) here because we have terms involving
130    # factorial(1/2)
131    assert g is not None and simplify(g - g1h).rewrite(gamma) == 0
132
133
134def test_gosper_sum_AeqB_part2():
135    f2a = n**2*a**n
136    f2b = (n - r/2)*binomial(r, n)
137    f2c = factorial(n - 1)**2/(factorial(n - x)*factorial(n + x))
138
139    g2a = -a*(a + 1)/(a - 1)**3 + a**(
140        m + 1)*(a**2*m**2 - 2*a*m**2 + m**2 - 2*a*m + 2*m + a + 1)/(a - 1)**3
141    g2b = (m - r)*binomial(r, m)/2
142    ff = factorial(1 - x)*factorial(1 + x)
143    g2c = 1/ff*(
144        1 - 1/x**2) + factorial(m)**2/(x**2*factorial(m - x)*factorial(m + x))
145
146    g = gosper_sum(f2a, (n, 0, m))
147    assert g is not None and simplify(g - g2a) == 0
148    g = gosper_sum(f2b, (n, 0, m))
149    assert g is not None and simplify(g - g2b) == 0
150    g = gosper_sum(f2c, (n, 1, m))
151    assert g is not None and simplify(g - g2c) == 0
152
153
154def test_gosper_nan():
155    a = Symbol('a', positive=True)
156    b = Symbol('b', positive=True)
157    n = Symbol('n', integer=True)
158    m = Symbol('m', integer=True)
159    f2d = n*(n + a + b)*a**n*b**n/(factorial(n + a)*factorial(n + b))
160    g2d = 1/(factorial(a - 1)*factorial(
161        b - 1)) - a**(m + 1)*b**(m + 1)/(factorial(a + m)*factorial(b + m))
162    g = gosper_sum(f2d, (n, 0, m))
163    assert simplify(g - g2d) == 0
164
165
166def test_gosper_sum_AeqB_part3():
167    f3a = 1/n**4
168    f3b = (6*n + 3)/(4*n**4 + 8*n**3 + 8*n**2 + 4*n + 3)
169    f3c = 2**n*(n**2 - 2*n - 1)/(n**2*(n + 1)**2)
170    f3d = n**2*4**n/((n + 1)*(n + 2))
171    f3e = 2**n/(n + 1)
172    f3f = 4*(n - 1)*(n**2 - 2*n - 1)/(n**2*(n + 1)**2*(n - 2)**2*(n - 3)**2)
173    f3g = (n**4 - 14*n**2 - 24*n - 9)*2**n/(n**2*(n + 1)**2*(n + 2)**2*
174           (n + 3)**2)
175
176    # g3a -> no closed form
177    g3b = m*(m + 2)/(2*m**2 + 4*m + 3)
178    g3c = 2**m/m**2 - 2
179    g3d = Rational(2, 3) + 4**(m + 1)*(m - 1)/(m + 2)/3
180    # g3e -> no closed form
181    g3f = -(Rational(-1, 16) + 1/((m - 2)**2*(m + 1)**2))  # the AeqB key is wrong
182    g3g = Rational(-2, 9) + 2**(m + 1)/((m + 1)**2*(m + 3)**2)
183
184    g = gosper_sum(f3a, (n, 1, m))
185    assert g is None
186    g = gosper_sum(f3b, (n, 1, m))
187    assert g is not None and simplify(g - g3b) == 0
188    g = gosper_sum(f3c, (n, 1, m - 1))
189    assert g is not None and simplify(g - g3c) == 0
190    g = gosper_sum(f3d, (n, 1, m))
191    assert g is not None and simplify(g - g3d) == 0
192    g = gosper_sum(f3e, (n, 0, m - 1))
193    assert g is None
194    g = gosper_sum(f3f, (n, 4, m))
195    assert g is not None and simplify(g - g3f) == 0
196    g = gosper_sum(f3g, (n, 1, m))
197    assert g is not None and simplify(g - g3g) == 0
198