1 /* ---------------------------------------------------------------------
2 *
3 *  -- PBLAS routine (version 2.0) --
4 *     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
5 *     and University of California, Berkeley.
6 *     April 1, 1998
7 *
8 *  ---------------------------------------------------------------------
9 */
10 /*
11 *  Include files
12 */
13 #include "pblas.h"
14 #include "PBpblas.h"
15 #include "PBtools.h"
16 #include "PBblacs.h"
17 #include "PBblas.h"
18 
19 #ifdef __STDC__
pdnrm2_(int * N,double * NORM2,double * X,int * IX,int * JX,int * DESCX,int * INCX)20 void pdnrm2_( int * N, double * NORM2,
21               double * X, int * IX, int * JX, int * DESCX, int * INCX )
22 #else
23 void pdnrm2_( N, NORM2, X, IX, JX, DESCX, INCX )
24 /*
25 *  .. Scalar Arguments ..
26 */
27    int            * INCX, * IX, * JX, * N;
28    double         * NORM2;
29 /*
30 *  .. Array Arguments ..
31 */
32    int            * DESCX;
33    double         * X;
34 #endif
35 {
36 /*
37 *  Purpose
38 *  =======
39 *
40 *  PDNRM2  computes the 2-norm of a subvector sub( X ),
41 *
42 *  where
43 *
44 *     sub( X ) denotes X(IX,JX:JX+N-1) if INCX = M_X,
45 *                      X(IX:IX+N-1,JX) if INCX = 1 and INCX <> M_X.
46 *
47 *  Notes
48 *  =====
49 *
50 *  A description  vector  is associated with each 2D block-cyclicly dis-
51 *  tributed matrix.  This  vector  stores  the  information  required to
52 *  establish the  mapping  between a  matrix entry and its corresponding
53 *  process and memory location.
54 *
55 *  In  the  following  comments,   the character _  should  be  read  as
56 *  "of  the  distributed  matrix".  Let  A  be a generic term for any 2D
57 *  block cyclicly distributed matrix.  Its description vector is DESC_A:
58 *
59 *  NOTATION         STORED IN       EXPLANATION
60 *  ---------------- --------------- ------------------------------------
61 *  DTYPE_A (global) DESCA[ DTYPE_ ] The descriptor type.
62 *  CTXT_A  (global) DESCA[ CTXT_  ] The BLACS context handle, indicating
63 *                                   the NPROW x NPCOL BLACS process grid
64 *                                   A  is  distributed over. The context
65 *                                   itself  is  global,  but  the handle
66 *                                   (the integer value) may vary.
67 *  M_A     (global) DESCA[ M_     ] The  number of rows in the distribu-
68 *                                   ted matrix A, M_A >= 0.
69 *  N_A     (global) DESCA[ N_     ] The number of columns in the distri-
70 *                                   buted matrix A, N_A >= 0.
71 *  IMB_A   (global) DESCA[ IMB_   ] The number of rows of the upper left
72 *                                   block of the matrix A, IMB_A > 0.
73 *  INB_A   (global) DESCA[ INB_   ] The  number  of columns of the upper
74 *                                   left   block   of   the  matrix   A,
75 *                                   INB_A > 0.
76 *  MB_A    (global) DESCA[ MB_    ] The blocking factor used to  distri-
77 *                                   bute the last  M_A-IMB_A  rows of A,
78 *                                   MB_A > 0.
79 *  NB_A    (global) DESCA[ NB_    ] The blocking factor used to  distri-
80 *                                   bute the last  N_A-INB_A  columns of
81 *                                   A, NB_A > 0.
82 *  RSRC_A  (global) DESCA[ RSRC_  ] The process row over which the first
83 *                                   row of the matrix  A is distributed,
84 *                                   NPROW > RSRC_A >= 0.
85 *  CSRC_A  (global) DESCA[ CSRC_  ] The  process column  over  which the
86 *                                   first column of  A  is  distributed.
87 *                                   NPCOL > CSRC_A >= 0.
88 *  LLD_A   (local)  DESCA[ LLD_   ] The  leading dimension  of the local
89 *                                   array  storing  the  local blocks of
90 *                                   the distributed matrix A,
91 *                                   IF( Lc( 1, N_A ) > 0 )
92 *                                      LLD_A >= MAX( 1, Lr( 1, M_A ) )
93 *                                   ELSE
94 *                                      LLD_A >= 1.
95 *
96 *  Let K be the number of  rows of a matrix A starting at the global in-
97 *  dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows
98 *  that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would
99 *  receive if these K rows were distributed over NPROW processes.  If  K
100 *  is the number of columns of a matrix  A  starting at the global index
101 *  JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number  of co-
102 *  lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would  receive if
103 *  these K columns were distributed over NPCOL processes.
104 *
105 *  The values of Lr() and Lc() may be determined via a call to the func-
106 *  tion PB_Cnumroc:
107 *  Lr( IA, K ) = PB_Cnumroc( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW )
108 *  Lc( JA, K ) = PB_Cnumroc( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL )
109 *
110 *  Arguments
111 *  =========
112 *
113 *  N       (global input) INTEGER
114 *          On entry,  N  specifies the length of the subvector sub( X ).
115 *          N must be at least zero.
116 *
117 *  NORM2   (local output) DOUBLE PRECISION
118 *          On exit, NORM2 specifies the 2-norm of the subvector sub( X )
119 *          only in its scope (See below for further details).
120 *
121 *  X       (local input) DOUBLE PRECISION array
122 *          On entry, X is an array of dimension (LLD_X, Kx), where LLD_X
123 *          is   at  least  MAX( 1, Lr( 1, IX ) )  when  INCX = M_X   and
124 *          MAX( 1, Lr( 1, IX+N-1 ) )  otherwise,  and,  Kx  is  at least
125 *          Lc( 1, JX+N-1 )  when  INCX = M_X  and Lc( 1, JX ) otherwise.
126 *          Before  entry,  this array  contains the local entries of the
127 *          matrix X.
128 *
129 *  IX      (global input) INTEGER
130 *          On entry, IX  specifies X's global row index, which points to
131 *          the beginning of the submatrix sub( X ).
132 *
133 *  JX      (global input) INTEGER
134 *          On entry, JX  specifies X's global column index, which points
135 *          to the beginning of the submatrix sub( X ).
136 *
137 *  DESCX   (global and local input) INTEGER array
138 *          On entry, DESCX  is an integer array of dimension DLEN_. This
139 *          is the array descriptor for the matrix X.
140 *
141 *  INCX    (global input) INTEGER
142 *          On entry,  INCX   specifies  the  global  increment  for  the
143 *          elements of  X.  Only two values of  INCX   are  supported in
144 *          this version, namely 1 and M_X. INCX  must not be zero.
145 *
146 *  Further Details
147 *  ===============
148 *
149 *  When  the  result  of  a vector-oriented PBLAS call is a scalar, this
150 *  scalar  is set only within the process scope which owns the vector(s)
151 *  being operated on. Let sub( X ) be a generic term for the input  vec-
152 *  tor(s). Then, the processes owning the correct the answer is determi-
153 *  ned as follows:  if  an  operation involves more than one vector, the
154 *  processes receiving the result will be the union of the following set
155 *  of processes for each vector:
156 *
157 *  If N = 1, M_X = 1 and INCX = 1,  then  one cannot determine if a pro-
158 *  cess  row  or  process column owns the vector operand, therefore only
159 *  the process owning sub( X ) receives the correct result;
160 *
161 *  If  INCX = M_X, then sub( X )  is a vector distributed over a process
162 *  row. Each process in this row receives the result;
163 *
164 *  If  INCX = 1, then  sub( X )  is  a vector distributed over a process
165 *  column. Each process in this column receives the result;
166 *
167 *  -- Written on April 1, 1998 by
168 *     Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
169 *
170 *  ---------------------------------------------------------------------
171 */
172 /*
173 *  .. Local Scalars ..
174 */
175    char           top;
176    int            Xcol, Xi, Xii, Xj, Xjj, Xld, Xnp, Xnq, Xrow, ctxt, dst, dist,
177                   info, k, mycol, mydist, myrow, npcol, nprow, src;
178    double         scale, ssq, temp1, temp2;
179 /*
180 *  .. Local Arrays ..
181 */
182    int            Xd[DLEN_];
183    double         * Xptr = NULL, work[4];
184 /* ..
185 *  .. Executable Statements ..
186 *
187 */
188    PB_CargFtoC( *IX, *JX, DESCX, &Xi, &Xj, Xd );
189 #ifndef NO_ARGCHK
190 /*
191 *  Test the input parameters
192 */
193    Cblacs_gridinfo( ( ctxt = Xd[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
194    if( !( info = ( ( nprow == -1 ) ? -( 601 + CTXT_ ) : 0 ) ) )
195       PB_Cchkvec( ctxt, "PDNRM2", "X", *N, 1, Xi, Xj, Xd, *INCX, 6, &info );
196    if( info ) { PB_Cabort( ctxt, "PDNRM2", info ); return; }
197 #endif
198 /*
199 *  Initialize NORM2
200 */
201    *NORM2 = ZERO;
202 /*
203 *  Quick return if possible
204 */
205    if( *N == 0 ) return;
206 /*
207 *  Retrieve process grid information
208 */
209 #ifdef NO_ARGCHK
210    Cblacs_gridinfo( ( ctxt = Xd[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
211 #endif
212 /*
213 *  Retrieve sub( X )'s local information: Xii, Xjj, Xrow, Xcol
214 */
215    PB_Cinfog2l( Xi, Xj, Xd, nprow, npcol, myrow, mycol, &Xii, &Xjj,
216                 &Xrow, &Xcol );
217 /*
218 *  Handle degenerate case separately, sub( X )'s scope is just one process
219 */
220    if( ( *N == 1 ) && ( *INCX == 1 ) && ( Xd[M_] == 1 ) )
221    {
222 /*
223 *  Make sure I own some data and compute NORM2
224 */
225       if( ( ( myrow == Xrow ) || ( Xrow < 0 ) ) &&
226           ( ( mycol == Xcol ) || ( Xcol < 0 ) ) )
227          *NORM2 = ABS( X[Xii+Xjj*Xd[LLD_]] );
228       return;
229    }
230    else if( *INCX == Xd[M_] )
231    {
232 /*
233 *  sub( X ) resides in (a) process row(s)
234 */
235       if( ( myrow == Xrow ) || ( Xrow < 0 ) )
236       {
237 /*
238 *        Initialize SCALE and SSQ
239 */
240          scale = ZERO;
241          ssq   = ONE;
242 /*
243 *  Make sure I own some data and compute local sum of squares
244 */
245          Xnq = PB_Cnumroc( *N, Xj, Xd[INB_], Xd[NB_], mycol, Xd[CSRC_], npcol );
246          if( Xnq > 0 )
247          {
248             Xld  = Xd[LLD_];
249             Xptr = X+(Xii+Xjj*Xld);
250 
251             for( k = 0; k < Xnq; k++ )
252             {
253                if( *Xptr != ZERO )
254                {
255                   temp1 = ABS( *Xptr );
256                   if( scale < temp1 )
257                   {
258                      temp2 = scale / temp1;
259                      ssq   = ONE + ssq * ( temp2 * temp2 );
260                      scale = temp1;
261                   }
262                   else
263                   {
264                      temp2 = temp1 / scale;
265                      ssq   = ssq +       ( temp2 * temp2 );
266                   }
267                }
268                Xptr += Xld;
269             }
270          }
271 /*
272 *  If Xnq <= 0, SCALE is zero and SSQ is one (see initialization above)
273 */
274          if( ( npcol >= 2 ) && ( Xcol >= 0 ) )
275          {
276 /*
277 *  Combine the local sum of squares using a 1-tree topology within process row
278 *  0 if npcol > 1 and Xcol >= 0, i.e sub( X ) is distributed.
279 */
280             work[0] = scale;
281             work[1] = ssq;
282 
283             mydist  = mycol;
284             k       = 1;
285 l_10:
286             if( mydist & 1 )
287             {
288                dist = k * ( mydist - 1 );
289                dst  = MPosMod( dist, npcol );
290                Cdgesd2d( ctxt, 2, 1, ((char*) work), 2, myrow, dst );
291                goto l_20;
292             }
293             else
294             {
295                dist = mycol + k;
296                src  = MPosMod( dist, npcol );
297 
298                if( mycol < src )
299                {
300                   Cdgerv2d( ctxt, 2, 1, ((char*)&work[2]), 2, myrow, src );
301                   if( work[0] >= work[2] )
302                   {
303                      if( work[0] != ZERO )
304                      {
305                         temp1   = work[2] / work[0];
306                         work[1] = work[1] + ( temp1 * temp1 ) * work[3];
307                      }
308                   }
309                   else
310                   {
311                      temp1   = work[0] / work[2];
312                      work[1] = work[3] + ( temp1 * temp1 ) * work[1];
313                      work[0] = work[2];
314                   }
315                }
316                mydist >>= 1;
317             }
318             k <<= 1;
319 
320             if( k < npcol ) goto l_10;
321 l_20:
322 /*
323 *  Process column 0 broadcasts the combined values of SCALE and SSQ within their
324 *  process row.
325 */
326             top = *PB_Ctop( &ctxt, BCAST, ROW, TOP_GET );
327             if( mycol == 0 )
328             {
329                Cdgebs2d( ctxt, ROW, &top, 2, 1, ((char*)work), 2 );
330             }
331             else
332             {
333                Cdgebr2d( ctxt, ROW, &top, 2, 1, ((char*)work), 2,
334                          myrow, 0 );
335             }
336 /*
337 *  Compute NORM2 redundantly NORM2  = WORK( 1 ) * SQRT( WORK( 2 ) )
338 */
339             dasqrtb_( &work[0], &work[1], NORM2 );
340          }
341          else
342          {
343 /*
344 *  Compute NORM2 redundantly ( sub( X ) is not distributed )
345 */
346             dasqrtb_( &scale, &ssq, NORM2 );
347          }
348       }
349       return;
350    }
351    else
352    {
353 /*
354 *  sub( X ) resides in (a) process column(s)
355 */
356       if( ( mycol == Xcol ) || ( Xcol < 0 ) )
357       {
358 /*
359 *  Initialize SCALE and SSQ
360 */
361          scale = ZERO;
362          ssq   = ONE;
363 /*
364 *  Make sure I own some data and compute local sum of squares
365 */
366          Xnp = PB_Cnumroc( *N, Xi, Xd[IMB_], Xd[MB_], myrow, Xd[RSRC_], nprow );
367          if( Xnp > 0 )
368          {
369             Xptr = X+(Xii+Xjj*Xd[LLD_]);
370 
371             for( k = 0; k < Xnp; k++ )
372             {
373                if( *Xptr != ZERO )
374                {
375                   temp1 = ABS( *Xptr );
376                   if( scale < temp1 )
377                   {
378                      temp2 = scale / temp1;
379                      ssq   = ONE + ssq * ( temp2 * temp2 );
380                      scale = temp1;
381                   }
382                   else
383                   {
384                      temp2 = temp1 / scale;
385                      ssq   = ssq +       ( temp2 * temp2 );
386                   }
387                }
388                Xptr++;
389             }
390          }
391 /*
392 *  If Xnp <= 0, SCALE is zero and SSQ is one (see initialization above)
393 */
394          if( ( nprow >= 2 ) && ( Xrow >= 0 ) )
395          {
396 /*
397 *  Combine the local sum of squares using a 1-tree topology within process
398 *  column 0 if nprow > 1 and Xrow >= 0, i.e sub( X ) is distributed.
399 */
400             work[0] = scale;
401             work[1] = ssq;
402 
403             mydist  = myrow;
404             k       = 1;
405 l_30:
406             if( mydist & 1 )
407             {
408                dist = k * ( mydist - 1 );
409                dst  = MPosMod( dist, nprow );
410                Cdgesd2d( ctxt, 2, 1, ((char*)work), 2, dst, mycol );
411                goto l_40;
412             }
413             else
414             {
415                dist = myrow + k;
416                src  = MPosMod( dist, nprow );
417 
418                if( myrow < src )
419                {
420                   Cdgerv2d( ctxt, 2, 1, ((char*)&work[2]), 2, src, mycol );
421                   if( work[0] >= work[2] )
422                   {
423                      if( work[0] != ZERO )
424                      {
425                         temp1   = work[2] / work[0];
426                         work[1] = work[1] + ( temp1 * temp1 ) * work[3];
427                      }
428                   }
429                   else
430                   {
431                      temp1   = work[0] / work[2];
432                      work[1] = work[3] + ( temp1 * temp1 ) * work[1];
433                      work[0] = work[2];
434                   }
435                }
436                mydist >>= 1;
437             }
438             k <<= 1;
439 
440             if( k < nprow ) goto l_30;
441 l_40:
442 /*
443 *  Process column 0 broadcasts the combined values of SCALE and SSQ within their
444 *  process column
445 */
446             top = *PB_Ctop( &ctxt, BCAST, COLUMN, TOP_GET );
447             if( myrow == 0 )
448             {
449                Cdgebs2d( ctxt, COLUMN, &top, 2, 1, ((char*)work), 2 );
450             }
451             else
452             {
453                Cdgebr2d( ctxt, COLUMN, &top, 2, 1, ((char*)work), 2,
454                          0, mycol );
455             }
456 /*
457 *  Compute NORM2 redundantly NORM2 = WORK[0] * SQRT( WORK[1] )
458 */
459             dasqrtb_( &work[0], &work[1], NORM2 );
460          }
461          else
462          {
463 /*
464 *  Compute NORM2 redundantly ( sub( X ) is not distributed )
465 */
466             dasqrtb_( &scale, &ssq, NORM2 );
467          }
468       }
469       return;
470    }
471 /*
472 *  End of PDNRM2
473 */
474 }
475