1 /* ---------------------------------------------------------------------
2 *
3 *  -- PBLAS routine (version 2.0) --
4 *     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
5 *     and University of California, Berkeley.
6 *     April 1, 1998
7 *
8 *  ---------------------------------------------------------------------
9 */
10 /*
11 *  Include files
12 */
13 #include "pblas.h"
14 #include "PBpblas.h"
15 #include "PBtools.h"
16 #include "PBblacs.h"
17 #include "PBblas.h"
18 
19 #ifdef __STDC__
picopy_(int * N,int * X,int * IX,int * JX,int * DESCX,int * INCX,int * Y,int * IY,int * JY,int * DESCY,int * INCY)20 void picopy_( int * N,
21               int * X, int * IX, int * JX, int * DESCX, int * INCX,
22               int * Y, int * IY, int * JY, int * DESCY, int * INCY )
23 #else
24 void picopy_( N, X, IX, JX, DESCX, INCX, Y, IY, JY, DESCY, INCY )
25 /*
26 *  .. Scalar Arguments ..
27 */
28    int            * INCX, * INCY, * IX, * IY, * JX, * JY, * N;
29 /*
30 *  .. Array Arguments ..
31 */
32    int            * DESCX, * DESCY;
33    int            * X, * Y;
34 #endif
35 {
36 /*
37 *  Purpose
38 *  =======
39 *
40 *  PICOPY  copies one subvector into another,
41 *
42 *     sub( Y ) := sub( X ),
43 *
44 *  where
45 *
46 *     sub( X ) denotes X(IX,JX:JX+N-1) if INCX = M_X,
47 *                      X(IX:IX+N-1,JX) if INCX = 1 and INCX <> M_X, and,
48 *
49 *     sub( Y ) denotes Y(IY,JY:JY+N-1) if INCY = M_Y,
50 *                      Y(IY:IY+N-1,JY) if INCY = 1 and INCY <> M_Y.
51 *
52 *  Notes
53 *  =====
54 *
55 *  A description  vector  is associated with each 2D block-cyclicly dis-
56 *  tributed matrix.  This  vector  stores  the  information  required to
57 *  establish the  mapping  between a  matrix entry and its corresponding
58 *  process and memory location.
59 *
60 *  In  the  following  comments,   the character _  should  be  read  as
61 *  "of  the  distributed  matrix".  Let  A  be a generic term for any 2D
62 *  block cyclicly distributed matrix.  Its description vector is DESC_A:
63 *
64 *  NOTATION         STORED IN       EXPLANATION
65 *  ---------------- --------------- ------------------------------------
66 *  DTYPE_A (global) DESCA[ DTYPE_ ] The descriptor type.
67 *  CTXT_A  (global) DESCA[ CTXT_  ] The BLACS context handle, indicating
68 *                                   the NPROW x NPCOL BLACS process grid
69 *                                   A  is  distributed over. The context
70 *                                   itself  is  global,  but  the handle
71 *                                   (the integer value) may vary.
72 *  M_A     (global) DESCA[ M_     ] The  number of rows in the distribu-
73 *                                   ted matrix A, M_A >= 0.
74 *  N_A     (global) DESCA[ N_     ] The number of columns in the distri-
75 *                                   buted matrix A, N_A >= 0.
76 *  IMB_A   (global) DESCA[ IMB_   ] The number of rows of the upper left
77 *                                   block of the matrix A, IMB_A > 0.
78 *  INB_A   (global) DESCA[ INB_   ] The  number  of columns of the upper
79 *                                   left   block   of   the  matrix   A,
80 *                                   INB_A > 0.
81 *  MB_A    (global) DESCA[ MB_    ] The blocking factor used to  distri-
82 *                                   bute the last  M_A-IMB_A  rows of A,
83 *                                   MB_A > 0.
84 *  NB_A    (global) DESCA[ NB_    ] The blocking factor used to  distri-
85 *                                   bute the last  N_A-INB_A  columns of
86 *                                   A, NB_A > 0.
87 *  RSRC_A  (global) DESCA[ RSRC_  ] The process row over which the first
88 *                                   row of the matrix  A is distributed,
89 *                                   NPROW > RSRC_A >= 0.
90 *  CSRC_A  (global) DESCA[ CSRC_  ] The  process column  over  which the
91 *                                   first column of  A  is  distributed.
92 *                                   NPCOL > CSRC_A >= 0.
93 *  LLD_A   (local)  DESCA[ LLD_   ] The  leading dimension  of the local
94 *                                   array  storing  the  local blocks of
95 *                                   the distributed matrix A,
96 *                                   IF( Lc( 1, N_A ) > 0 )
97 *                                      LLD_A >= MAX( 1, Lr( 1, M_A ) )
98 *                                   ELSE
99 *                                      LLD_A >= 1.
100 *
101 *  Let K be the number of  rows of a matrix A starting at the global in-
102 *  dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows
103 *  that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would
104 *  receive if these K rows were distributed over NPROW processes.  If  K
105 *  is the number of columns of a matrix  A  starting at the global index
106 *  JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number  of co-
107 *  lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would  receive if
108 *  these K columns were distributed over NPCOL processes.
109 *
110 *  The values of Lr() and Lc() may be determined via a call to the func-
111 *  tion PB_Cnumroc:
112 *  Lr( IA, K ) = PB_Cnumroc( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW )
113 *  Lc( JA, K ) = PB_Cnumroc( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL )
114 *
115 *  Arguments
116 *  =========
117 *
118 *  N       (global input) INTEGER
119 *          On entry,  N  specifies the  length of the  subvectors to  be
120 *          copied. N must be at least zero.
121 *
122 *  X       (local input) INTEGER array
123 *          On entry, X is an array of dimension (LLD_X, Kx), where LLD_X
124 *          is   at  least  MAX( 1, Lr( 1, IX ) )  when  INCX = M_X   and
125 *          MAX( 1, Lr( 1, IX+N-1 ) )  otherwise,  and,  Kx  is  at least
126 *          Lc( 1, JX+N-1 )  when  INCX = M_X  and Lc( 1, JX ) otherwise.
127 *          Before  entry,  this  array contains the local entries of the
128 *          matrix X.
129 *
130 *  IX      (global input) INTEGER
131 *          On entry, IX  specifies X's global row index, which points to
132 *          the beginning of the submatrix sub( X ).
133 *
134 *  JX      (global input) INTEGER
135 *          On entry, JX  specifies X's global column index, which points
136 *          to the beginning of the submatrix sub( X ).
137 *
138 *  DESCX   (global and local input) INTEGER array
139 *          On entry, DESCX  is an integer array of dimension DLEN_. This
140 *          is the array descriptor for the matrix X.
141 *
142 *  INCX    (global input) INTEGER
143 *          On entry,  INCX   specifies  the  global  increment  for  the
144 *          elements of  X.  Only two values of  INCX   are  supported in
145 *          this version, namely 1 and M_X. INCX  must not be zero.
146 *
147 *  Y       (local output) INTEGER array
148 *          On entry, Y is an array of dimension (LLD_Y, Ky), where LLD_Y
149 *          is   at  least  MAX( 1, Lr( 1, IY ) )  when  INCY = M_Y   and
150 *          MAX( 1, Lr( 1, IY+N-1 ) )  otherwise,  and,  Ky  is  at least
151 *          Lc( 1, JY+N-1 )  when  INCY = M_Y  and Lc( 1, JY ) otherwise.
152 *          Before  entry,  this  array contains the local entries of the
153 *          matrix Y. On exit, sub( Y ) is overwritten with sub( X ).
154 *
155 *  IY      (global input) INTEGER
156 *          On entry, IY  specifies Y's global row index, which points to
157 *          the beginning of the submatrix sub( Y ).
158 *
159 *  JY      (global input) INTEGER
160 *          On entry, JY  specifies Y's global column index, which points
161 *          to the beginning of the submatrix sub( Y ).
162 *
163 *  DESCY   (global and local input) INTEGER array
164 *          On entry, DESCY  is an integer array of dimension DLEN_. This
165 *          is the array descriptor for the matrix Y.
166 *
167 *  INCY    (global input) INTEGER
168 *          On entry,  INCY   specifies  the  global  increment  for  the
169 *          elements of  Y.  Only two values of  INCY   are  supported in
170 *          this version, namely 1 and M_Y. INCY  must not be zero.
171 *
172 *  -- Written on April 1, 1998 by
173 *     Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
174 *
175 *  ---------------------------------------------------------------------
176 */
177 /*
178 *  .. Local Scalars ..
179 */
180    int            Xi, Xj, Yi, Yj, ctxt, info, mycol, myrow, npcol, nprow;
181    PBTYP_T        * type;
182 /*
183 *  .. Local Arrays ..
184 */
185    int            Xd[DLEN_], Yd[DLEN_];
186 /* ..
187 *  .. Executable Statements ..
188 *
189 */
190    PB_CargFtoC( *IX, *JX, DESCX, &Xi, &Xj, Xd );
191    PB_CargFtoC( *IY, *JY, DESCY, &Yi, &Yj, Yd );
192 #ifndef NO_ARGCHK
193 /*
194 *  Test the input parameters
195 */
196    Cblacs_gridinfo( ( ctxt = Xd[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
197    if( !( info = ( ( nprow == -1 ) ? -( 501 + CTXT_ ) : 0 ) ) )
198    {
199       PB_Cchkvec( ctxt, "PICOPY", "X", *N, 1, Xi, Xj, Xd, *INCX,  5, &info );
200       PB_Cchkvec( ctxt, "PICOPY", "Y", *N, 1, Yi, Yj, Yd, *INCY, 10, &info );
201    }
202    if( info ) { PB_Cabort( ctxt, "PICOPY", info ); return; }
203 #endif
204 /*
205 *  Quick return if possible
206 */
207    if( *N == 0 ) return;
208 /*
209 *  Get type structure
210 */
211    type = PB_Citypeset();
212 /*
213 *  Start the operations
214 */
215    if( *INCX == Xd[M_] )
216    {
217       PB_Cpaxpby( type, NOCONJG, 1, *N, type->one, ((char *) X), Xi,
218                   Xj, Xd, ROW,    type->zero, ((char *) Y), Yi, Yj, Yd,
219                   ( *INCY == Yd[M_] ? ROW : COLUMN ) );
220    }
221    else
222    {
223       PB_Cpaxpby( type, NOCONJG, *N, 1, type->one, ((char *) X), Xi,
224                   Xj, Xd, COLUMN, type->zero, ((char *) Y), Yi, Yj, Yd,
225                   ( *INCY == Yd[M_] ? ROW : COLUMN ) );
226    }
227 /*
228 *  End of PICOPY
229 */
230 }
231