1      SUBROUTINE PDDTTRS( TRANS, N, NRHS, DL, D, DU, JA, DESCA, B, IB,
2     $                    DESCB, AF, LAF, WORK, LWORK, INFO )
3*
4*  -- ScaLAPACK routine (version 1.7) --
5*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
6*     and University of California, Berkeley.
7*     April 3, 2000
8*
9*     .. Scalar Arguments ..
10      CHARACTER          TRANS
11      INTEGER            IB, INFO, JA, LAF, LWORK, N, NRHS
12*     ..
13*     .. Array Arguments ..
14      INTEGER            DESCA( * ), DESCB( * )
15      DOUBLE PRECISION   AF( * ), B( * ), D( * ), DL( * ), DU( * ),
16     $                   WORK( * )
17*     ..
18*
19*
20*  Purpose
21*  =======
22*
23*  PDDTTRS solves a system of linear equations
24*
25*            A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
26*                                    or
27*            A(1:N, JA:JA+N-1)' * X = B(IB:IB+N-1, 1:NRHS)
28*
29*  where A(1:N, JA:JA+N-1) is the matrix used to produce the factors
30*  stored in A(1:N,JA:JA+N-1) and AF by PDDTTRF.
31*  A(1:N, JA:JA+N-1) is an N-by-N real
32*  tridiagonal diagonally dominant-like distributed
33*  matrix.
34*
35*  Routine PDDTTRF MUST be called first.
36*
37*  =====================================================================
38*
39*  Arguments
40*  =========
41*
42*
43*  TRANS   (global input) CHARACTER
44*          = 'N':  Solve with A(1:N, JA:JA+N-1);
45*          = 'T' or 'C':  Solve with A(1:N, JA:JA+N-1)^T;
46*
47*  N       (global input) INTEGER
48*          The number of rows and columns to be operated on, i.e. the
49*          order of the distributed submatrix A(1:N, JA:JA+N-1). N >= 0.
50*
51*  NRHS    (global input) INTEGER
52*          The number of right hand sides, i.e., the number of columns
53*          of the distributed submatrix B(IB:IB+N-1, 1:NRHS).
54*          NRHS >= 0.
55*
56*  DL      (local input/local output) DOUBLE PRECISION pointer to local
57*          part of global vector storing the lower diagonal of the
58*          matrix. Globally, DL(1) is not referenced, and DL must be
59*          aligned with D.
60*          Must be of size >= DESCA( NB_ ).
61*          On exit, this array contains information containing the
62*            factors of the matrix.
63*
64*  D       (local input/local output) DOUBLE PRECISION pointer to local
65*          part of global vector storing the main diagonal of the
66*          matrix.
67*          On exit, this array contains information containing the
68*            factors of the matrix.
69*          Must be of size >= DESCA( NB_ ).
70*
71*  DU       (local input/local output) DOUBLE PRECISION pointer to local
72*          part of global vector storing the upper diagonal of the
73*          matrix. Globally, DU(n) is not referenced, and DU must be
74*          aligned with D.
75*          On exit, this array contains information containing the
76*            factors of the matrix.
77*          Must be of size >= DESCA( NB_ ).
78*
79*  JA      (global input) INTEGER
80*          The index in the global array A that points to the start of
81*          the matrix to be operated on (which may be either all of A
82*          or a submatrix of A).
83*
84*  DESCA   (global and local input) INTEGER array of dimension DLEN.
85*          if 1D type (DTYPE_A=501 or 502), DLEN >= 7;
86*          if 2D type (DTYPE_A=1), DLEN >= 9.
87*          The array descriptor for the distributed matrix A.
88*          Contains information of mapping of A to memory. Please
89*          see NOTES below for full description and options.
90*
91*  B       (local input/local output) DOUBLE PRECISION pointer into
92*          local memory to an array of local lead dimension lld_b>=NB.
93*          On entry, this array contains the
94*          the local pieces of the right hand sides
95*          B(IB:IB+N-1, 1:NRHS).
96*          On exit, this contains the local piece of the solutions
97*          distributed matrix X.
98*
99*  IB      (global input) INTEGER
100*          The row index in the global array B that points to the first
101*          row of the matrix to be operated on (which may be either
102*          all of B or a submatrix of B).
103*
104*  DESCB   (global and local input) INTEGER array of dimension DLEN.
105*          if 1D type (DTYPE_B=502), DLEN >=7;
106*          if 2D type (DTYPE_B=1), DLEN >= 9.
107*          The array descriptor for the distributed matrix B.
108*          Contains information of mapping of B to memory. Please
109*          see NOTES below for full description and options.
110*
111*  AF      (local output) DOUBLE PRECISION array, dimension LAF.
112*          Auxiliary Fillin Space.
113*          Fillin is created during the factorization routine
114*          PDDTTRF and this is stored in AF. If a linear system
115*          is to be solved using PDDTTRS after the factorization
116*          routine, AF *must not be altered* after the factorization.
117*
118*  LAF     (local input) INTEGER
119*          Size of user-input Auxiliary Fillin space AF. Must be >=
120*          2*(NB+2)
121*          If LAF is not large enough, an error code will be returned
122*          and the minimum acceptable size will be returned in AF( 1 )
123*
124*  WORK    (local workspace/local output)
125*          DOUBLE PRECISION temporary workspace. This space may
126*          be overwritten in between calls to routines. WORK must be
127*          the size given in LWORK.
128*          On exit, WORK( 1 ) contains the minimal LWORK.
129*
130*  LWORK   (local input or global input) INTEGER
131*          Size of user-input workspace WORK.
132*          If LWORK is too small, the minimal acceptable size will be
133*          returned in WORK(1) and an error code is returned. LWORK>=
134*          10*NPCOL+4*NRHS
135*
136*  INFO    (local output) INTEGER
137*          = 0:  successful exit
138*          < 0:  If the i-th argument is an array and the j-entry had
139*                an illegal value, then INFO = -(i*100+j), if the i-th
140*                argument is a scalar and had an illegal value, then
141*                INFO = -i.
142*
143*  =====================================================================
144*
145*
146*  Restrictions
147*  ============
148*
149*  The following are restrictions on the input parameters. Some of these
150*    are temporary and will be removed in future releases, while others
151*    may reflect fundamental technical limitations.
152*
153*    Non-cyclic restriction: VERY IMPORTANT!
154*      P*NB>= mod(JA-1,NB)+N.
155*      The mapping for matrices must be blocked, reflecting the nature
156*      of the divide and conquer algorithm as a task-parallel algorithm.
157*      This formula in words is: no processor may have more than one
158*      chunk of the matrix.
159*
160*    Blocksize cannot be too small:
161*      If the matrix spans more than one processor, the following
162*      restriction on NB, the size of each block on each processor,
163*      must hold:
164*      NB >= 2
165*      The bulk of parallel computation is done on the matrix of size
166*      O(NB) on each processor. If this is too small, divide and conquer
167*      is a poor choice of algorithm.
168*
169*    Submatrix reference:
170*      JA = IB
171*      Alignment restriction that prevents unnecessary communication.
172*
173*
174*  =====================================================================
175*
176*
177*  Notes
178*  =====
179*
180*  If the factorization routine and the solve routine are to be called
181*    separately (to solve various sets of righthand sides using the same
182*    coefficient matrix), the auxiliary space AF *must not be altered*
183*    between calls to the factorization routine and the solve routine.
184*
185*  The best algorithm for solving banded and tridiagonal linear systems
186*    depends on a variety of parameters, especially the bandwidth.
187*    Currently, only algorithms designed for the case N/P >> bw are
188*    implemented. These go by many names, including Divide and Conquer,
189*    Partitioning, domain decomposition-type, etc.
190*    For tridiagonal matrices, it is obvious: N/P >> bw(=1), and so D&C
191*    algorithms are the appropriate choice.
192*
193*  Algorithm description: Divide and Conquer
194*
195*    The Divide and Conqer algorithm assumes the matrix is narrowly
196*      banded compared with the number of equations. In this situation,
197*      it is best to distribute the input matrix A one-dimensionally,
198*      with columns atomic and rows divided amongst the processes.
199*      The basic algorithm divides the tridiagonal matrix up into
200*      P pieces with one stored on each processor,
201*      and then proceeds in 2 phases for the factorization or 3 for the
202*      solution of a linear system.
203*      1) Local Phase:
204*         The individual pieces are factored independently and in
205*         parallel. These factors are applied to the matrix creating
206*         fillin, which is stored in a non-inspectable way in auxiliary
207*         space AF. Mathematically, this is equivalent to reordering
208*         the matrix A as P A P^T and then factoring the principal
209*         leading submatrix of size equal to the sum of the sizes of
210*         the matrices factored on each processor. The factors of
211*         these submatrices overwrite the corresponding parts of A
212*         in memory.
213*      2) Reduced System Phase:
214*         A small ((P-1)) system is formed representing
215*         interaction of the larger blocks, and is stored (as are its
216*         factors) in the space AF. A parallel Block Cyclic Reduction
217*         algorithm is used. For a linear system, a parallel front solve
218*         followed by an analagous backsolve, both using the structure
219*         of the factored matrix, are performed.
220*      3) Backsubsitution Phase:
221*         For a linear system, a local backsubstitution is performed on
222*         each processor in parallel.
223*
224*
225*  Descriptors
226*  ===========
227*
228*  Descriptors now have *types* and differ from ScaLAPACK 1.0.
229*
230*  Note: tridiagonal codes can use either the old two dimensional
231*    or new one-dimensional descriptors, though the processor grid in
232*    both cases *must be one-dimensional*. We describe both types below.
233*
234*  Each global data object is described by an associated description
235*  vector.  This vector stores the information required to establish
236*  the mapping between an object element and its corresponding process
237*  and memory location.
238*
239*  Let A be a generic term for any 2D block cyclicly distributed array.
240*  Such a global array has an associated description vector DESCA.
241*  In the following comments, the character _ should be read as
242*  "of the global array".
243*
244*  NOTATION        STORED IN      EXPLANATION
245*  --------------- -------------- --------------------------------------
246*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
247*                                 DTYPE_A = 1.
248*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
249*                                 the BLACS process grid A is distribu-
250*                                 ted over. The context itself is glo-
251*                                 bal, but the handle (the integer
252*                                 value) may vary.
253*  M_A    (global) DESCA( M_ )    The number of rows in the global
254*                                 array A.
255*  N_A    (global) DESCA( N_ )    The number of columns in the global
256*                                 array A.
257*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
258*                                 the rows of the array.
259*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
260*                                 the columns of the array.
261*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
262*                                 row of the array A is distributed.
263*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
264*                                 first column of the array A is
265*                                 distributed.
266*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
267*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
268*
269*  Let K be the number of rows or columns of a distributed matrix,
270*  and assume that its process grid has dimension p x q.
271*  LOCr( K ) denotes the number of elements of K that a process
272*  would receive if K were distributed over the p processes of its
273*  process column.
274*  Similarly, LOCc( K ) denotes the number of elements of K that a
275*  process would receive if K were distributed over the q processes of
276*  its process row.
277*  The values of LOCr() and LOCc() may be determined via a call to the
278*  ScaLAPACK tool function, NUMROC:
279*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
280*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
281*  An upper bound for these quantities may be computed by:
282*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
283*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
284*
285*
286*  One-dimensional descriptors:
287*
288*  One-dimensional descriptors are a new addition to ScaLAPACK since
289*    version 1.0. They simplify and shorten the descriptor for 1D
290*    arrays.
291*
292*  Since ScaLAPACK supports two-dimensional arrays as the fundamental
293*    object, we allow 1D arrays to be distributed either over the
294*    first dimension of the array (as if the grid were P-by-1) or the
295*    2nd dimension (as if the grid were 1-by-P). This choice is
296*    indicated by the descriptor type (501 or 502)
297*    as described below.
298*    However, for tridiagonal matrices, since the objects being
299*    distributed are the individual vectors storing the diagonals, we
300*    have adopted the convention that both the P-by-1 descriptor and
301*    the 1-by-P descriptor are allowed and are equivalent for
302*    tridiagonal matrices. Thus, for tridiagonal matrices,
303*    DTYPE_A = 501 or 502 can be used interchangeably
304*    without any other change.
305*  We require that the distributed vectors storing the diagonals of a
306*    tridiagonal matrix be aligned with each other. Because of this, a
307*    single descriptor, DESCA, serves to describe the distribution of
308*    of all diagonals simultaneously.
309*
310*    IMPORTANT NOTE: the actual BLACS grid represented by the
311*    CTXT entry in the descriptor may be *either*  P-by-1 or 1-by-P
312*    irrespective of which one-dimensional descriptor type
313*    (501 or 502) is input.
314*    This routine will interpret the grid properly either way.
315*    ScaLAPACK routines *do not support intercontext operations* so that
316*    the grid passed to a single ScaLAPACK routine *must be the same*
317*    for all array descriptors passed to that routine.
318*
319*    NOTE: In all cases where 1D descriptors are used, 2D descriptors
320*    may also be used, since a one-dimensional array is a special case
321*    of a two-dimensional array with one dimension of size unity.
322*    The two-dimensional array used in this case *must* be of the
323*    proper orientation:
324*      If the appropriate one-dimensional descriptor is DTYPEA=501
325*      (1 by P type), then the two dimensional descriptor must
326*      have a CTXT value that refers to a 1 by P BLACS grid;
327*      If the appropriate one-dimensional descriptor is DTYPEA=502
328*      (P by 1 type), then the two dimensional descriptor must
329*      have a CTXT value that refers to a P by 1 BLACS grid.
330*
331*
332*  Summary of allowed descriptors, types, and BLACS grids:
333*  DTYPE           501         502         1         1
334*  BLACS grid      1xP or Px1  1xP or Px1  1xP       Px1
335*  -----------------------------------------------------
336*  A               OK          OK          OK        NO
337*  B               NO          OK          NO        OK
338*
339*  Note that a consequence of this chart is that it is not possible
340*    for *both* DTYPE_A and DTYPE_B to be 2D_type(1), as these lead
341*    to opposite requirements for the orientation of the BLACS grid,
342*    and as noted before, the *same* BLACS context must be used in
343*    all descriptors in a single ScaLAPACK subroutine call.
344*
345*  Let A be a generic term for any 1D block cyclicly distributed array.
346*  Such a global array has an associated description vector DESCA.
347*  In the following comments, the character _ should be read as
348*  "of the global array".
349*
350*  NOTATION        STORED IN  EXPLANATION
351*  --------------- ---------- ------------------------------------------
352*  DTYPE_A(global) DESCA( 1 ) The descriptor type. For 1D grids,
353*                                TYPE_A = 501: 1-by-P grid.
354*                                TYPE_A = 502: P-by-1 grid.
355*  CTXT_A (global) DESCA( 2 ) The BLACS context handle, indicating
356*                                the BLACS process grid A is distribu-
357*                                ted over. The context itself is glo-
358*                                bal, but the handle (the integer
359*                                value) may vary.
360*  N_A    (global) DESCA( 3 ) The size of the array dimension being
361*                                distributed.
362*  NB_A   (global) DESCA( 4 ) The blocking factor used to distribute
363*                                the distributed dimension of the array.
364*  SRC_A  (global) DESCA( 5 ) The process row or column over which the
365*                                first row or column of the array
366*                                is distributed.
367*  Ignored         DESCA( 6 ) Ignored for tridiagonal matrices.
368*  Reserved        DESCA( 7 ) Reserved for future use.
369*
370*
371*
372*  =====================================================================
373*
374*  Code Developer: Andrew J. Cleary, University of Tennessee.
375*    Current address: Lawrence Livermore National Labs.
376*
377*  =====================================================================
378*
379*     .. Parameters ..
380      INTEGER            INT_ONE
381      PARAMETER          ( INT_ONE = 1 )
382      INTEGER            DESCMULT, BIGNUM
383      PARAMETER          ( DESCMULT = 100, BIGNUM = DESCMULT*DESCMULT )
384      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
385     $                   LLD_, MB_, M_, NB_, N_, RSRC_
386      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
387     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
388     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
389*     ..
390*     .. Local Scalars ..
391      INTEGER            CSRC, FIRST_PROC, ICTXT, ICTXT_NEW, ICTXT_SAVE,
392     $                   IDUM2, IDUM3, JA_NEW, LLDA, LLDB, MYCOL, MYROW,
393     $                   MY_NUM_COLS, NB, NP, NPCOL, NPROW, NP_SAVE,
394     $                   ODD_SIZE, PART_OFFSET, PART_SIZE, RETURN_CODE,
395     $                   STORE_M_B, STORE_N_A, TEMP, WORK_SIZE_MIN
396*     ..
397*     .. Local Arrays ..
398      INTEGER            DESCA_1XP( 7 ), DESCB_PX1( 7 ),
399     $                   PARAM_CHECK( 15, 3 )
400*     ..
401*     .. External Subroutines ..
402      EXTERNAL           BLACS_GRIDEXIT, BLACS_GRIDINFO, DESC_CONVERT,
403     $                   GLOBCHK, PDDTTRSV, PXERBLA, RESHAPE
404*     ..
405*     .. External Functions ..
406      LOGICAL            LSAME
407      INTEGER            NUMROC
408      EXTERNAL           LSAME, NUMROC
409*     ..
410*     .. Intrinsic Functions ..
411      INTRINSIC          ICHAR, MOD
412*     ..
413*     .. Executable Statements ..
414*
415*     Test the input parameters
416*
417      INFO = 0
418*
419*     Convert descriptor into standard form for easy access to
420*        parameters, check that grid is of right shape.
421*
422      DESCA_1XP( 1 ) = 501
423      DESCB_PX1( 1 ) = 502
424*
425      TEMP = DESCA( DTYPE_ )
426      IF( TEMP.EQ.502 ) THEN
427*        Temporarily set the descriptor type to 1xP type
428         DESCA( DTYPE_ ) = 501
429      END IF
430*
431      CALL DESC_CONVERT( DESCA, DESCA_1XP, RETURN_CODE )
432*
433      DESCA( DTYPE_ ) = TEMP
434*
435      IF( RETURN_CODE.NE.0 ) THEN
436         INFO = -( 8*100+2 )
437      END IF
438*
439      CALL DESC_CONVERT( DESCB, DESCB_PX1, RETURN_CODE )
440*
441      IF( RETURN_CODE.NE.0 ) THEN
442         INFO = -( 11*100+2 )
443      END IF
444*
445*     Consistency checks for DESCA and DESCB.
446*
447*     Context must be the same
448      IF( DESCA_1XP( 2 ).NE.DESCB_PX1( 2 ) ) THEN
449         INFO = -( 11*100+2 )
450      END IF
451*
452*        These are alignment restrictions that may or may not be removed
453*        in future releases. -Andy Cleary, April 14, 1996.
454*
455*     Block sizes must be the same
456      IF( DESCA_1XP( 4 ).NE.DESCB_PX1( 4 ) ) THEN
457         INFO = -( 11*100+4 )
458      END IF
459*
460*     Source processor must be the same
461*
462      IF( DESCA_1XP( 5 ).NE.DESCB_PX1( 5 ) ) THEN
463         INFO = -( 11*100+5 )
464      END IF
465*
466*     Get values out of descriptor for use in code.
467*
468      ICTXT = DESCA_1XP( 2 )
469      CSRC = DESCA_1XP( 5 )
470      NB = DESCA_1XP( 4 )
471      LLDA = DESCA_1XP( 6 )
472      STORE_N_A = DESCA_1XP( 3 )
473      LLDB = DESCB_PX1( 6 )
474      STORE_M_B = DESCB_PX1( 3 )
475*
476*     Get grid parameters
477*
478*
479      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
480      NP = NPROW*NPCOL
481*
482*
483*
484      IF( LSAME( TRANS, 'N' ) ) THEN
485         IDUM2 = ICHAR( 'N' )
486      ELSE IF( LSAME( TRANS, 'T' ) ) THEN
487         IDUM2 = ICHAR( 'T' )
488      ELSE IF( LSAME( TRANS, 'C' ) ) THEN
489         IDUM2 = ICHAR( 'T' )
490      ELSE
491         INFO = -1
492      END IF
493*
494      IF( LWORK.LT.-1 ) THEN
495         INFO = -15
496      ELSE IF( LWORK.EQ.-1 ) THEN
497         IDUM3 = -1
498      ELSE
499         IDUM3 = 1
500      END IF
501*
502      IF( N.LT.0 ) THEN
503         INFO = -2
504      END IF
505*
506      IF( N+JA-1.GT.STORE_N_A ) THEN
507         INFO = -( 8*100+6 )
508      END IF
509*
510      IF( N+IB-1.GT.STORE_M_B ) THEN
511         INFO = -( 11*100+3 )
512      END IF
513*
514      IF( LLDB.LT.NB ) THEN
515         INFO = -( 11*100+6 )
516      END IF
517*
518      IF( NRHS.LT.0 ) THEN
519         INFO = -3
520      END IF
521*
522*     Current alignment restriction
523*
524      IF( JA.NE.IB ) THEN
525         INFO = -7
526      END IF
527*
528*     Argument checking that is specific to Divide & Conquer routine
529*
530      IF( NPROW.NE.1 ) THEN
531         INFO = -( 8*100+2 )
532      END IF
533*
534      IF( N.GT.NP*NB-MOD( JA-1, NB ) ) THEN
535         INFO = -( 2 )
536         CALL PXERBLA( ICTXT, 'PDDTTRS, D&C alg.: only 1 block per proc'
537     $                 , -INFO )
538         RETURN
539      END IF
540*
541      IF( ( JA+N-1.GT.NB ) .AND. ( NB.LT.2*INT_ONE ) ) THEN
542         INFO = -( 8*100+4 )
543         CALL PXERBLA( ICTXT, 'PDDTTRS, D&C alg.: NB too small', -INFO )
544         RETURN
545      END IF
546*
547*
548      WORK_SIZE_MIN = 10*NPCOL + 4*NRHS
549*
550      WORK( 1 ) = WORK_SIZE_MIN
551*
552      IF( LWORK.LT.WORK_SIZE_MIN ) THEN
553         IF( LWORK.NE.-1 ) THEN
554            INFO = -15
555            CALL PXERBLA( ICTXT, 'PDDTTRS: worksize error', -INFO )
556         END IF
557         RETURN
558      END IF
559*
560*     Pack params and positions into arrays for global consistency check
561*
562      PARAM_CHECK( 15, 1 ) = DESCB( 5 )
563      PARAM_CHECK( 14, 1 ) = DESCB( 4 )
564      PARAM_CHECK( 13, 1 ) = DESCB( 3 )
565      PARAM_CHECK( 12, 1 ) = DESCB( 2 )
566      PARAM_CHECK( 11, 1 ) = DESCB( 1 )
567      PARAM_CHECK( 10, 1 ) = IB
568      PARAM_CHECK( 9, 1 ) = DESCA( 5 )
569      PARAM_CHECK( 8, 1 ) = DESCA( 4 )
570      PARAM_CHECK( 7, 1 ) = DESCA( 3 )
571      PARAM_CHECK( 6, 1 ) = DESCA( 1 )
572      PARAM_CHECK( 5, 1 ) = JA
573      PARAM_CHECK( 4, 1 ) = NRHS
574      PARAM_CHECK( 3, 1 ) = N
575      PARAM_CHECK( 2, 1 ) = IDUM3
576      PARAM_CHECK( 1, 1 ) = IDUM2
577*
578      PARAM_CHECK( 15, 2 ) = 1105
579      PARAM_CHECK( 14, 2 ) = 1104
580      PARAM_CHECK( 13, 2 ) = 1103
581      PARAM_CHECK( 12, 2 ) = 1102
582      PARAM_CHECK( 11, 2 ) = 1101
583      PARAM_CHECK( 10, 2 ) = 10
584      PARAM_CHECK( 9, 2 ) = 805
585      PARAM_CHECK( 8, 2 ) = 804
586      PARAM_CHECK( 7, 2 ) = 803
587      PARAM_CHECK( 6, 2 ) = 801
588      PARAM_CHECK( 5, 2 ) = 7
589      PARAM_CHECK( 4, 2 ) = 3
590      PARAM_CHECK( 3, 2 ) = 2
591      PARAM_CHECK( 2, 2 ) = 15
592      PARAM_CHECK( 1, 2 ) = 1
593*
594*     Want to find errors with MIN( ), so if no error, set it to a big
595*     number. If there already is an error, multiply by the the
596*     descriptor multiplier.
597*
598      IF( INFO.GE.0 ) THEN
599         INFO = BIGNUM
600      ELSE IF( INFO.LT.-DESCMULT ) THEN
601         INFO = -INFO
602      ELSE
603         INFO = -INFO*DESCMULT
604      END IF
605*
606*     Check consistency across processors
607*
608      CALL GLOBCHK( ICTXT, 15, PARAM_CHECK, 15, PARAM_CHECK( 1, 3 ),
609     $              INFO )
610*
611*     Prepare output: set info = 0 if no error, and divide by DESCMULT
612*     if error is not in a descriptor entry.
613*
614      IF( INFO.EQ.BIGNUM ) THEN
615         INFO = 0
616      ELSE IF( MOD( INFO, DESCMULT ).EQ.0 ) THEN
617         INFO = -INFO / DESCMULT
618      ELSE
619         INFO = -INFO
620      END IF
621*
622      IF( INFO.LT.0 ) THEN
623         CALL PXERBLA( ICTXT, 'PDDTTRS', -INFO )
624         RETURN
625      END IF
626*
627*     Quick return if possible
628*
629      IF( N.EQ.0 )
630     $   RETURN
631*
632      IF( NRHS.EQ.0 )
633     $   RETURN
634*
635*
636*     Adjust addressing into matrix space to properly get into
637*        the beginning part of the relevant data
638*
639      PART_OFFSET = NB*( ( JA-1 ) / ( NPCOL*NB ) )
640*
641      IF( ( MYCOL-CSRC ).LT.( JA-PART_OFFSET-1 ) / NB ) THEN
642         PART_OFFSET = PART_OFFSET + NB
643      END IF
644*
645      IF( MYCOL.LT.CSRC ) THEN
646         PART_OFFSET = PART_OFFSET - NB
647      END IF
648*
649*     Form a new BLACS grid (the "standard form" grid) with only procs
650*        holding part of the matrix, of size 1xNP where NP is adjusted,
651*        starting at csrc=0, with JA modified to reflect dropped procs.
652*
653*     First processor to hold part of the matrix:
654*
655      FIRST_PROC = MOD( ( JA-1 ) / NB+CSRC, NPCOL )
656*
657*     Calculate new JA one while dropping off unused processors.
658*
659      JA_NEW = MOD( JA-1, NB ) + 1
660*
661*     Save and compute new value of NP
662*
663      NP_SAVE = NP
664      NP = ( JA_NEW+N-2 ) / NB + 1
665*
666*     Call utility routine that forms "standard-form" grid
667*
668      CALL RESHAPE( ICTXT, INT_ONE, ICTXT_NEW, INT_ONE, FIRST_PROC,
669     $              INT_ONE, NP )
670*
671*     Use new context from standard grid as context.
672*
673      ICTXT_SAVE = ICTXT
674      ICTXT = ICTXT_NEW
675      DESCA_1XP( 2 ) = ICTXT_NEW
676      DESCB_PX1( 2 ) = ICTXT_NEW
677*
678*     Get information about new grid.
679*
680      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
681*
682*     Drop out processors that do not have part of the matrix.
683*
684      IF( MYROW.LT.0 ) THEN
685         GO TO 20
686      END IF
687*
688*     ********************************
689*     Values reused throughout routine
690*
691*     User-input value of partition size
692*
693      PART_SIZE = NB
694*
695*     Number of columns in each processor
696*
697      MY_NUM_COLS = NUMROC( N, PART_SIZE, MYCOL, 0, NPCOL )
698*
699*     Offset in columns to beginning of main partition in each proc
700*
701      IF( MYCOL.EQ.0 ) THEN
702         PART_OFFSET = PART_OFFSET + MOD( JA_NEW-1, PART_SIZE )
703         MY_NUM_COLS = MY_NUM_COLS - MOD( JA_NEW-1, PART_SIZE )
704      END IF
705*
706*     Size of main (or odd) partition in each processor
707*
708      ODD_SIZE = MY_NUM_COLS
709      IF( MYCOL.LT.NP-1 ) THEN
710         ODD_SIZE = ODD_SIZE - INT_ONE
711      END IF
712*
713*
714*
715*     Begin main code
716*
717      INFO = 0
718*
719*     Call frontsolve routine
720*
721      IF( LSAME( TRANS, 'N' ) ) THEN
722*
723         CALL PDDTTRSV( 'L', 'N', N, NRHS, DL( PART_OFFSET+1 ),
724     $                  D( PART_OFFSET+1 ), DU( PART_OFFSET+1 ), JA_NEW,
725     $                  DESCA_1XP, B, IB, DESCB_PX1, AF, LAF, WORK,
726     $                  LWORK, INFO )
727*
728      ELSE
729*
730         CALL PDDTTRSV( 'U', 'T', N, NRHS, DL( PART_OFFSET+1 ),
731     $                  D( PART_OFFSET+1 ), DU( PART_OFFSET+1 ), JA_NEW,
732     $                  DESCA_1XP, B, IB, DESCB_PX1, AF, LAF, WORK,
733     $                  LWORK, INFO )
734*
735      END IF
736*
737*     Call backsolve routine
738*
739      IF( ( LSAME( TRANS, 'C' ) ) .OR. ( LSAME( TRANS, 'T' ) ) ) THEN
740*
741         CALL PDDTTRSV( 'L', 'T', N, NRHS, DL( PART_OFFSET+1 ),
742     $                  D( PART_OFFSET+1 ), DU( PART_OFFSET+1 ), JA_NEW,
743     $                  DESCA_1XP, B, IB, DESCB_PX1, AF, LAF, WORK,
744     $                  LWORK, INFO )
745*
746      ELSE
747*
748         CALL PDDTTRSV( 'U', 'N', N, NRHS, DL( PART_OFFSET+1 ),
749     $                  D( PART_OFFSET+1 ), DU( PART_OFFSET+1 ), JA_NEW,
750     $                  DESCA_1XP, B, IB, DESCB_PX1, AF, LAF, WORK,
751     $                  LWORK, INFO )
752*
753      END IF
754   10 CONTINUE
755*
756*
757*     Free BLACS space used to hold standard-form grid.
758*
759      IF( ICTXT_SAVE.NE.ICTXT_NEW ) THEN
760         CALL BLACS_GRIDEXIT( ICTXT_NEW )
761      END IF
762*
763   20 CONTINUE
764*
765*     Restore saved input parameters
766*
767      ICTXT = ICTXT_SAVE
768      NP = NP_SAVE
769*
770*     Output minimum worksize
771*
772      WORK( 1 ) = WORK_SIZE_MIN
773*
774*
775      RETURN
776*
777*     End of PDDTTRS
778*
779      END
780