1      SUBROUTINE PDORMR2( SIDE, TRANS, M, N, K, A, IA, JA, DESCA, TAU,
2     $                    C, IC, JC, DESCC, WORK, LWORK, INFO )
3*
4*  -- ScaLAPACK routine (version 1.7) --
5*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
6*     and University of California, Berkeley.
7*     May 25, 2001
8*
9*     .. Scalar Arguments ..
10      CHARACTER          SIDE, TRANS
11      INTEGER            IA, IC, INFO, JA, JC, K, LWORK, M, N
12*     ..
13*     .. Array Arguments ..
14      INTEGER            DESCA( * ), DESCC( * )
15      DOUBLE PRECISION   A( * ), C( * ), TAU( * ), WORK( * )
16*     ..
17*
18*  Purpose
19*  =======
20*
21*  PDORMR2 overwrites the general real M-by-N distributed matrix
22*  sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with
23*
24*                       SIDE = 'L'          SIDE = 'R'
25*  TRANS = 'N':      Q * sub( C )         sub(  C ) * Q
26*  TRANS = 'T':      Q**T * sub( C )      sub( C ) * Q**T
27*
28*  where Q is a real orthogonal distributed matrix defined as the
29*  product of K elementary reflectors
30*
31*        Q = H(1) H(2) . . . H(k)
32*
33*  as returned by PDGERQF. Q is of order M if SIDE = 'L' and of order N
34*  if SIDE = 'R'.
35*
36*  Notes
37*  =====
38*
39*  Each global data object is described by an associated description
40*  vector.  This vector stores the information required to establish
41*  the mapping between an object element and its corresponding process
42*  and memory location.
43*
44*  Let A be a generic term for any 2D block cyclicly distributed array.
45*  Such a global array has an associated description vector DESCA.
46*  In the following comments, the character _ should be read as
47*  "of the global array".
48*
49*  NOTATION        STORED IN      EXPLANATION
50*  --------------- -------------- --------------------------------------
51*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
52*                                 DTYPE_A = 1.
53*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
54*                                 the BLACS process grid A is distribu-
55*                                 ted over. The context itself is glo-
56*                                 bal, but the handle (the integer
57*                                 value) may vary.
58*  M_A    (global) DESCA( M_ )    The number of rows in the global
59*                                 array A.
60*  N_A    (global) DESCA( N_ )    The number of columns in the global
61*                                 array A.
62*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
63*                                 the rows of the array.
64*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
65*                                 the columns of the array.
66*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
67*                                 row of the array A is distributed.
68*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
69*                                 first column of the array A is
70*                                 distributed.
71*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
72*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
73*
74*  Let K be the number of rows or columns of a distributed matrix,
75*  and assume that its process grid has dimension p x q.
76*  LOCr( K ) denotes the number of elements of K that a process
77*  would receive if K were distributed over the p processes of its
78*  process column.
79*  Similarly, LOCc( K ) denotes the number of elements of K that a
80*  process would receive if K were distributed over the q processes of
81*  its process row.
82*  The values of LOCr() and LOCc() may be determined via a call to the
83*  ScaLAPACK tool function, NUMROC:
84*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
85*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
86*  An upper bound for these quantities may be computed by:
87*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
88*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
89*
90*  Arguments
91*  =========
92*
93*  SIDE    (global input) CHARACTER
94*          = 'L': apply Q or Q**T from the Left;
95*          = 'R': apply Q or Q**T from the Right.
96*
97*  TRANS   (global input) CHARACTER
98*          = 'N':  No transpose, apply Q;
99*          = 'T':  Transpose, apply Q**T.
100*
101*  M       (global input) INTEGER
102*          The number of rows to be operated on i.e the number of rows
103*          of the distributed submatrix sub( C ). M >= 0.
104*
105*  N       (global input) INTEGER
106*          The number of columns to be operated on i.e the number of
107*          columns of the distributed submatrix sub( C ). N >= 0.
108*
109*  K       (global input) INTEGER
110*          The number of elementary reflectors whose product defines the
111*          matrix Q.  If SIDE = 'L', M >= K >= 0, if SIDE = 'R',
112*          N >= K >= 0.
113*
114*  A       (local input) DOUBLE PRECISION pointer into the local memory
115*          to an array of dimension (LLD_A,LOCc(JA+M-1)) if SIDE='L',
116*          and (LLD_A,LOCc(JA+N-1)) if SIDE='R', where
117*          LLD_A >= MAX(1,LOCr(IA+K-1)); On entry, the i-th row must
118*          contain the vector which defines the elementary reflector
119*          H(i), IA <= i <= IA+K-1, as returned by PDGERQF in the
120*          K rows of its distributed matrix argument A(IA:IA+K-1,JA:*).
121*          A(IA:IA+K-1,JA:*) is modified by the routine but restored on
122*          exit.
123*
124*  IA      (global input) INTEGER
125*          The row index in the global array A indicating the first
126*          row of sub( A ).
127*
128*  JA      (global input) INTEGER
129*          The column index in the global array A indicating the
130*          first column of sub( A ).
131*
132*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
133*          The array descriptor for the distributed matrix A.
134*
135*  TAU     (local input) DOUBLE PRECISION array, dimension LOCc(IA+K-1).
136*          This array contains the scalar factors TAU(i) of the
137*          elementary reflectors H(i) as returned by PDGERQF.
138*          TAU is tied to the distributed matrix A.
139*
140*  C       (local input/local output) DOUBLE PRECISION pointer into the
141*          local memory to an array of dimension (LLD_C,LOCc(JC+N-1)).
142*          On entry, the local pieces of the distributed matrix sub(C).
143*          On exit, sub( C ) is overwritten by Q*sub( C ) or Q'*sub( C )
144*          or sub( C )*Q' or sub( C )*Q.
145*
146*  IC      (global input) INTEGER
147*          The row index in the global array C indicating the first
148*          row of sub( C ).
149*
150*  JC      (global input) INTEGER
151*          The column index in the global array C indicating the
152*          first column of sub( C ).
153*
154*  DESCC   (global and local input) INTEGER array of dimension DLEN_.
155*          The array descriptor for the distributed matrix C.
156*
157*  WORK    (local workspace/local output) DOUBLE PRECISION array,
158*                                                      dimension (LWORK)
159*          On exit, WORK(1) returns the minimal and optimal LWORK.
160*
161*  LWORK   (local or global input) INTEGER
162*          The dimension of the array WORK.
163*          LWORK is local input and must be at least
164*          If SIDE = 'L', LWORK >= MpC0 + MAX( MAX( 1, NqC0 ), NUMROC(
165*                  NUMROC( M+IROFFC,MB_A,0,0,NPROW ),MB_A,0,0,LCMP ) );
166*          if SIDE = 'R', LWORK >= NqC0 + MAX( 1, MpC0 );
167*
168*          where LCMP = LCM / NPROW with LCM = ICLM( NPROW, NPCOL ),
169*
170*          IROFFC = MOD( IC-1, MB_C ), ICOFFC = MOD( JC-1, NB_C ),
171*          ICROW = INDXG2P( IC, MB_C, MYROW, RSRC_C, NPROW ),
172*          ICCOL = INDXG2P( JC, NB_C, MYCOL, CSRC_C, NPCOL ),
173*          MpC0 = NUMROC( M+IROFFC, MB_C, MYROW, ICROW, NPROW ),
174*          NqC0 = NUMROC( N+ICOFFC, NB_C, MYCOL, ICCOL, NPCOL ),
175*
176*          ILCM, INDXG2P and NUMROC are ScaLAPACK tool functions;
177*          MYROW, MYCOL, NPROW and NPCOL can be determined by calling
178*          the subroutine BLACS_GRIDINFO.
179*
180*          If LWORK = -1, then LWORK is global input and a workspace
181*          query is assumed; the routine only calculates the minimum
182*          and optimal size for all work arrays. Each of these
183*          values is returned in the first entry of the corresponding
184*          work array, and no error message is issued by PXERBLA.
185*
186*
187*  INFO    (local output) INTEGER
188*          = 0:  successful exit
189*          < 0:  If the i-th argument is an array and the j-entry had
190*                an illegal value, then INFO = -(i*100+j), if the i-th
191*                argument is a scalar and had an illegal value, then
192*                INFO = -i.
193*
194*  Alignment requirements
195*  ======================
196*
197*  The distributed submatrices A(IA:*, JA:*) and C(IC:IC+M-1,JC:JC+N-1)
198*  must verify some alignment properties, namely the following
199*  expressions should be true:
200*
201*  If SIDE = 'L',
202*    ( NB_A.EQ.MB_C .AND. ICOFFA.EQ.IROFFC )
203*  If SIDE = 'R',
204*    ( NB_A.EQ.NB_C .AND. ICOFFA.EQ.ICOFFC .AND. IACOL.EQ.ICCOL )
205*
206*  =====================================================================
207*
208*     .. Parameters ..
209      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
210     $                   LLD_, MB_, M_, NB_, N_, RSRC_
211      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
212     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
213     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
214      DOUBLE PRECISION   ONE
215      PARAMETER          ( ONE = 1.0D+0 )
216*     ..
217*     .. Local Scalars ..
218      LOGICAL            LEFT, LQUERY, NOTRAN
219      CHARACTER          COLBTOP, ROWBTOP
220      INTEGER            I, I1, I2, I3, IACOL, ICCOL, ICOFFA, ICOFFC,
221     $                   ICROW, ICTXT, IROFFC, LCM, LCMP, LWMIN, MI,
222     $                   MPC0, MYCOL, MYROW, NI, NPCOL, NPROW, NQ, NQC0
223      DOUBLE PRECISION   AII
224*     ..
225*     .. External Subroutines ..
226      EXTERNAL           BLACS_ABORT, BLACS_GRIDINFO, CHK1MAT, PDELSET,
227     $                   PDELSET2, PDLARF, PB_TOPGET, PB_TOPSET, PXERBLA
228*     ..
229*     .. External Functions ..
230      LOGICAL            LSAME
231      INTEGER            ILCM, INDXG2P, NUMROC
232      EXTERNAL           ILCM, INDXG2P, LSAME, NUMROC
233*     ..
234*     .. Intrinsic Functions ..
235      INTRINSIC          DBLE, MAX, MOD
236*     ..
237*     .. Executable Statements ..
238*
239*     Get grid parameters
240*
241      ICTXT = DESCA( CTXT_ )
242      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
243*
244*     Test the input parameters
245*
246      INFO = 0
247      IF( NPROW.EQ.-1 ) THEN
248         INFO = -(900+CTXT_)
249      ELSE
250         LEFT = LSAME( SIDE, 'L' )
251         NOTRAN = LSAME( TRANS, 'N' )
252*
253*        NQ is the order of Q
254*
255         IF( LEFT ) THEN
256            NQ = M
257            CALL CHK1MAT( K, 5, M, 3, IA, JA, DESCA, 9, INFO )
258         ELSE
259            NQ = N
260            CALL CHK1MAT( K, 5, N, 4, IA, JA, DESCA, 9, INFO )
261         END IF
262         CALL CHK1MAT( M, 3, N, 4, IC, JC, DESCC, 14, INFO )
263         IF( INFO.EQ.0 ) THEN
264            ICOFFA = MOD( JA-1, DESCA( NB_ ) )
265            IROFFC = MOD( IC-1, DESCC( MB_ ) )
266            ICOFFC = MOD( JC-1, DESCC( NB_ ) )
267            IACOL = INDXG2P( JA, DESCA( NB_ ), MYCOL, DESCA( CSRC_ ),
268     $                       NPCOL )
269            ICROW = INDXG2P( IC, DESCC( MB_ ), MYROW, DESCC( RSRC_ ),
270     $                       NPROW )
271            ICCOL = INDXG2P( JC, DESCC( NB_ ), MYCOL, DESCC( CSRC_ ),
272     $                       NPCOL )
273            MPC0 = NUMROC( M+IROFFC, DESCC( MB_ ), MYROW, ICROW, NPROW )
274            NQC0 = NUMROC( N+ICOFFC, DESCC( NB_ ), MYCOL, ICCOL, NPCOL )
275*
276            IF( LEFT ) THEN
277               LCM = ILCM( NPROW, NPCOL )
278               LCMP = LCM / NPROW
279               LWMIN = MPC0 + MAX( MAX( 1, NQC0 ), NUMROC( NUMROC(
280     $                 M+IROFFC, DESCA( MB_ ), 0, 0, NPROW ),
281     $                 DESCA( MB_ ), 0, 0, LCMP ) )
282            ELSE
283               LWMIN = NQC0 + MAX( 1, MPC0 )
284            END IF
285*
286            WORK( 1 ) = DBLE( LWMIN )
287            LQUERY = ( LWORK.EQ.-1 )
288            IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
289               INFO = -1
290            ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
291               INFO = -2
292            ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
293               INFO = -5
294            ELSE IF( LEFT .AND. DESCA( NB_ ).NE.DESCC( MB_ ) ) THEN
295               INFO = -(900+NB_)
296            ELSE IF( LEFT .AND. ICOFFA.NE.IROFFC ) THEN
297               INFO = -12
298            ELSE IF( .NOT.LEFT .AND. ICOFFA.NE.ICOFFC ) THEN
299               INFO = -13
300            ELSE IF( .NOT.LEFT .AND. IACOL.NE.ICCOL ) THEN
301               INFO = -13
302            ELSE IF( .NOT.LEFT .AND. DESCA( NB_ ).NE.DESCC( NB_ ) ) THEN
303               INFO = -(1400+NB_)
304            ELSE IF( ICTXT.NE.DESCC( CTXT_ ) ) THEN
305               INFO = -(1400+CTXT_)
306            ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
307               INFO = -16
308            END IF
309         END IF
310      END IF
311*
312      IF( INFO.NE.0 ) THEN
313         CALL PXERBLA( ICTXT, 'PDORMR2', -INFO )
314         CALL BLACS_ABORT( ICTXT, 1 )
315         RETURN
316      ELSE IF( LQUERY ) THEN
317         RETURN
318      END IF
319*
320*     Quick return if possible
321*
322      IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 )
323     $   RETURN
324*
325      CALL PB_TOPGET( ICTXT, 'Broadcast', 'Rowwise', ROWBTOP )
326      CALL PB_TOPGET( ICTXT, 'Broadcast', 'Columnwise', COLBTOP )
327*
328      IF( ( LEFT .AND. .NOT.NOTRAN .OR. .NOT.LEFT .AND. NOTRAN ) ) THEN
329         I1 = IA
330         I2 = IA + K - 1
331         I3 = 1
332      ELSE
333         I1 = IA + K - 1
334         I2 = IA
335         I3 = -1
336      END IF
337*
338      IF( LEFT ) THEN
339         NI = N
340      ELSE
341         MI = M
342         CALL PB_TOPSET( ICTXT, 'Broadcast', 'Rowwise', ' ' )
343         IF( NOTRAN ) THEN
344            CALL PB_TOPSET( ICTXT, 'Broadcast', 'Columnwise', 'I-ring' )
345         ELSE
346            CALL PB_TOPSET( ICTXT, 'Broadcast', 'Columnwise', 'D-ring' )
347         END IF
348      END IF
349*
350      DO 10 I = I1, I2, I3
351         IF( LEFT ) THEN
352*
353*           H(i) or H(i)' is applied to C(ic:ic+m-k+i-ia,jc:jc+n-1)
354*
355            MI = M - K + I - IA + 1
356         ELSE
357*
358*           H(i) or H(i)' is applied to C(ic:ic+m-1,jc:jc+n-k+i-ia+1)
359*
360            NI = N - K + I - IA + 1
361         END IF
362*
363*        Apply H(i) or H(i)'
364*
365         CALL PDELSET2( AII, A, I, JA+NQ-K+I-IA, DESCA, ONE )
366         CALL PDLARF( SIDE, MI, NI, A, I, JA, DESCA, DESCA( M_ ),
367     $                TAU, C, IC, JC, DESCC, WORK )
368         CALL PDELSET( A, I, JA+NQ-K+I-IA, DESCA, AII )
369*
370   10 CONTINUE
371*
372      CALL PB_TOPSET( ICTXT, 'Broadcast', 'Rowwise', ROWBTOP )
373      CALL PB_TOPSET( ICTXT, 'Broadcast', 'Columnwise', COLBTOP )
374*
375      WORK( 1 ) = DBLE( LWMIN )
376*
377      RETURN
378*
379*     End of PDORMR2
380*
381      END
382