1      SUBROUTINE PDORMRQ( SIDE, TRANS, M, N, K, A, IA, JA, DESCA, TAU,
2     $                    C, IC, JC, DESCC, WORK, LWORK, INFO )
3*
4*  -- ScaLAPACK routine (version 1.7) --
5*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
6*     and University of California, Berkeley.
7*     May 25, 2001
8*
9*     .. Scalar Arguments ..
10      CHARACTER          SIDE, TRANS
11      INTEGER            IA, IC, INFO, JA, JC, K, LWORK, M, N
12*     ..
13*     .. Array Arguments ..
14      INTEGER            DESCA( * ), DESCC( * )
15      DOUBLE PRECISION   A( * ), C( * ), TAU( * ), WORK( * )
16*     ..
17*
18*  Purpose
19*  =======
20*
21*  PDORMRQ overwrites the general real M-by-N distributed matrix
22*  sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with
23*
24*                       SIDE = 'L'           SIDE = 'R'
25*  TRANS = 'N':      Q * sub( C )          sub( C ) * Q
26*  TRANS = 'T':      Q**T * sub( C )       sub( C ) * Q**T
27*
28*  where Q is a real orthogonal distributed matrix defined as the
29*  product of K elementary reflectors
30*
31*        Q = H(1) H(2) . . . H(k)
32*
33*  as returned by PDGERQF. Q is of order M if SIDE = 'L' and of order N
34*  if SIDE = 'R'.
35*
36*  Notes
37*  =====
38*
39*  Each global data object is described by an associated description
40*  vector.  This vector stores the information required to establish
41*  the mapping between an object element and its corresponding process
42*  and memory location.
43*
44*  Let A be a generic term for any 2D block cyclicly distributed array.
45*  Such a global array has an associated description vector DESCA.
46*  In the following comments, the character _ should be read as
47*  "of the global array".
48*
49*  NOTATION        STORED IN      EXPLANATION
50*  --------------- -------------- --------------------------------------
51*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
52*                                 DTYPE_A = 1.
53*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
54*                                 the BLACS process grid A is distribu-
55*                                 ted over. The context itself is glo-
56*                                 bal, but the handle (the integer
57*                                 value) may vary.
58*  M_A    (global) DESCA( M_ )    The number of rows in the global
59*                                 array A.
60*  N_A    (global) DESCA( N_ )    The number of columns in the global
61*                                 array A.
62*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
63*                                 the rows of the array.
64*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
65*                                 the columns of the array.
66*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
67*                                 row of the array A is distributed.
68*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
69*                                 first column of the array A is
70*                                 distributed.
71*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
72*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
73*
74*  Let K be the number of rows or columns of a distributed matrix,
75*  and assume that its process grid has dimension p x q.
76*  LOCr( K ) denotes the number of elements of K that a process
77*  would receive if K were distributed over the p processes of its
78*  process column.
79*  Similarly, LOCc( K ) denotes the number of elements of K that a
80*  process would receive if K were distributed over the q processes of
81*  its process row.
82*  The values of LOCr() and LOCc() may be determined via a call to the
83*  ScaLAPACK tool function, NUMROC:
84*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
85*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
86*  An upper bound for these quantities may be computed by:
87*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
88*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
89*
90*  Arguments
91*  =========
92*
93*  SIDE    (global input) CHARACTER
94*          = 'L': apply Q or Q**T from the Left;
95*          = 'R': apply Q or Q**T from the Right.
96*
97*  TRANS   (global input) CHARACTER
98*          = 'N':  No transpose, apply Q;
99*          = 'T':  Transpose, apply Q**T.
100*
101*  M       (global input) INTEGER
102*          The number of rows to be operated on i.e the number of rows
103*          of the distributed submatrix sub( C ). M >= 0.
104*
105*  N       (global input) INTEGER
106*          The number of columns to be operated on i.e the number of
107*          columns of the distributed submatrix sub( C ). N >= 0.
108*
109*  K       (global input) INTEGER
110*          The number of elementary reflectors whose product defines the
111*          matrix Q.  If SIDE = 'L', M >= K >= 0, if SIDE = 'R',
112*          N >= K >= 0.
113*
114*  A       (local input) DOUBLE PRECISION pointer into the local memory
115*          to an array of dimension (LLD_A,LOCc(JA+M-1)) if SIDE='L',
116*          and (LLD_A,LOCc(JA+N-1)) if SIDE='R', where
117*          LLD_A >= MAX(1,LOCr(IA+K-1)); On entry, the i-th row must
118*          contain the vector which defines the elementary reflector
119*          H(i), IA <= i <= IA+K-1, as returned by PDGERQF in the
120*          K rows of its distributed matrix argument A(IA:IA+K-1,JA:*).
121*          A(IA:IA+K-1,JA:*) is modified by the routine but restored on
122*          exit.
123*
124*  IA      (global input) INTEGER
125*          The row index in the global array A indicating the first
126*          row of sub( A ).
127*
128*  JA      (global input) INTEGER
129*          The column index in the global array A indicating the
130*          first column of sub( A ).
131*
132*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
133*          The array descriptor for the distributed matrix A.
134*
135*  TAU     (local input) DOUBLE PRECISION array, dimension LOCc(IA+K-1).
136*          This array contains the scalar factors TAU(i) of the
137*          elementary reflectors H(i) as returned by PDGERQF.
138*          TAU is tied to the distributed matrix A.
139*
140*  C       (local input/local output) DOUBLE PRECISION pointer into the
141*          local memory to an array of dimension (LLD_C,LOCc(JC+N-1)).
142*          On entry, the local pieces of the distributed matrix sub(C).
143*          On exit, sub( C ) is overwritten by Q*sub( C ) or Q'*sub( C )
144*          or sub( C )*Q' or sub( C )*Q.
145*
146*  IC      (global input) INTEGER
147*          The row index in the global array C indicating the first
148*          row of sub( C ).
149*
150*  JC      (global input) INTEGER
151*          The column index in the global array C indicating the
152*          first column of sub( C ).
153*
154*  DESCC   (global and local input) INTEGER array of dimension DLEN_.
155*          The array descriptor for the distributed matrix C.
156*
157*  WORK    (local workspace/local output) DOUBLE PRECISION array,
158*                                                     dimension (LWORK)
159*          On exit, WORK(1) returns the minimal and optimal LWORK.
160*
161*  LWORK   (local or global input) INTEGER
162*          The dimension of the array WORK.
163*          LWORK is local input and must be at least
164*          if SIDE = 'L',
165*            LWORK >= MAX( (MB_A*(MB_A-1))/2, ( MpC0 + MAX( MqA0 +
166*                     NUMROC( NUMROC( M+IROFFC, MB_A, 0, 0, NPROW ),
167*                             MB_A, 0, 0, LCMP ), NqC0 ) )*MB_A ) +
168*                     MB_A * MB_A
169*          else if SIDE = 'R',
170*            LWORK >= MAX( (MB_A*(MB_A-1))/2, (MpC0 + NqC0)*MB_A ) +
171*                     MB_A * MB_A
172*          end if
173*
174*          where LCMP = LCM / NPROW with LCM = ICLM( NPROW, NPCOL ),
175*
176*          IROFFA = MOD( IA-1, MB_A ), ICOFFA = MOD( JA-1, NB_A ),
177*          IACOL = INDXG2P( JA, NB_A, MYCOL, CSRC_A, NPCOL ),
178*          MqA0 = NUMROC( M+ICOFFA, NB_A, MYCOL, IACOL, NPCOL ),
179*
180*          IROFFC = MOD( IC-1, MB_C ), ICOFFC = MOD( JC-1, NB_C ),
181*          ICROW = INDXG2P( IC, MB_C, MYROW, RSRC_C, NPROW ),
182*          ICCOL = INDXG2P( JC, NB_C, MYCOL, CSRC_C, NPCOL ),
183*          MpC0 = NUMROC( M+IROFFC, MB_C, MYROW, ICROW, NPROW ),
184*          NqC0 = NUMROC( N+ICOFFC, NB_C, MYCOL, ICCOL, NPCOL ),
185*
186*          ILCM, INDXG2P and NUMROC are ScaLAPACK tool functions;
187*          MYROW, MYCOL, NPROW and NPCOL can be determined by calling
188*          the subroutine BLACS_GRIDINFO.
189*
190*          If LWORK = -1, then LWORK is global input and a workspace
191*          query is assumed; the routine only calculates the minimum
192*          and optimal size for all work arrays. Each of these
193*          values is returned in the first entry of the corresponding
194*          work array, and no error message is issued by PXERBLA.
195*
196*
197*  INFO    (global output) INTEGER
198*          = 0:  successful exit
199*          < 0:  If the i-th argument is an array and the j-entry had
200*                an illegal value, then INFO = -(i*100+j), if the i-th
201*                argument is a scalar and had an illegal value, then
202*                INFO = -i.
203*
204*  Alignment requirements
205*  ======================
206*
207*  The distributed submatrices A(IA:*, JA:*) and C(IC:IC+M-1,JC:JC+N-1)
208*  must verify some alignment properties, namely the following
209*  expressions should be true:
210*
211*  If SIDE = 'L',
212*    ( NB_A.EQ.MB_C .AND. ICOFFA.EQ.IROFFC )
213*  If SIDE = 'R',
214*    ( NB_A.EQ.NB_C .AND. ICOFFA.EQ.ICOFFC .AND. IACOL.EQ.ICCOL )
215*
216*  =====================================================================
217*
218*     .. Parameters ..
219      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
220     $                   LLD_, MB_, M_, NB_, N_, RSRC_
221      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
222     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
223     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
224*     ..
225*     .. Local Scalars ..
226      LOGICAL            LEFT, LQUERY, NOTRAN, RIGHT, TRAN
227      CHARACTER          COLBTOP, ROWBTOP, TRANST
228      INTEGER            I, I1, I2, I3, IACOL, IB, ICCOL, ICOFFA,
229     $                   ICOFFC, ICROW, ICTXT, IINFO, IPW, IROFFC, LCM,
230     $                   LCMP, LWMIN, MI, MPC0, MQA0, MYCOL, MYROW, NI,
231     $                   NPCOL, NPROW, NQ, NQC0
232*     ..
233*     .. Local Arrays ..
234      INTEGER            IDUM1( 4 ), IDUM2( 4 )
235*     ..
236*     .. External Subroutines ..
237      EXTERNAL           BLACS_GRIDINFO, CHK1MAT, PCHK2MAT, PDLARFB,
238     $                   PDLARFT, PDORMR2, PB_TOPGET, PB_TOPSET, PXERBLA
239*     ..
240*     .. External Functions ..
241      LOGICAL            LSAME
242      INTEGER            ICEIL, ILCM, INDXG2P, NUMROC
243      EXTERNAL           ICEIL, ILCM, INDXG2P, LSAME, NUMROC
244*     ..
245*     .. Intrinsic Functions ..
246      INTRINSIC          DBLE, ICHAR, MAX, MIN, MOD
247*     ..
248*     .. Executable Statements ..
249*
250*     Get grid parameters
251*
252      ICTXT = DESCA( CTXT_ )
253      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
254*
255*     Test the input parameters
256*
257      INFO = 0
258      IF( NPROW.EQ.-1 ) THEN
259         INFO = -(900+CTXT_)
260      ELSE
261         IF( LSAME( SIDE, 'L' ) ) THEN
262            LEFT = .TRUE.
263            RIGHT = .FALSE.
264         ELSE
265            LEFT = .FALSE.
266            RIGHT = .TRUE.
267         END IF
268         IF( LSAME( TRANS, 'N' ) ) THEN
269            NOTRAN = .TRUE.
270            TRAN = .FALSE.
271         ELSE
272            NOTRAN = .FALSE.
273            TRAN = .TRUE.
274         END IF
275*
276*        NQ is the order of Q
277*
278         IF( LEFT ) THEN
279            NQ = M
280            CALL CHK1MAT( K, 5, M, 3, IA, JA, DESCA, 9, INFO )
281         ELSE
282            NQ = N
283            CALL CHK1MAT( K, 5, N, 4, IA, JA, DESCA, 9, INFO )
284         END IF
285         CALL CHK1MAT( M, 3, N, 4, IC, JC, DESCC, 14, INFO )
286         IF( INFO.EQ.0 ) THEN
287            ICOFFA = MOD( JA-1, DESCA( NB_ ) )
288            IROFFC = MOD( IC-1, DESCC( MB_ ) )
289            ICOFFC = MOD( JC-1, DESCC( NB_ ) )
290            IACOL = INDXG2P( JA, DESCA( NB_ ), MYCOL, DESCA( CSRC_ ),
291     $                       NPCOL )
292            ICROW = INDXG2P( IC, DESCC( MB_ ), MYROW, DESCC( RSRC_ ),
293     $                       NPROW )
294            ICCOL = INDXG2P( JC, DESCC( NB_ ), MYCOL, DESCC( CSRC_ ),
295     $                       NPCOL )
296            MPC0 = NUMROC( M+IROFFC, DESCC( MB_ ), MYROW, ICROW, NPROW )
297            NQC0 = NUMROC( N+ICOFFC, DESCC( NB_ ), MYCOL, ICCOL, NPCOL )
298*
299            IF( LEFT ) THEN
300               MQA0 = NUMROC( M+ICOFFA, DESCA( NB_ ), MYCOL, IACOL,
301     $                        NPCOL )
302               LCM = ILCM( NPROW, NPCOL )
303               LCMP = LCM / NPROW
304               LWMIN =  MAX( ( DESCA( MB_ ) * ( DESCA( MB_ ) - 1 ) )
305     $                  / 2, ( MPC0 + MAX( MQA0 + NUMROC( NUMROC(
306     $                  M+IROFFC, DESCA( MB_ ), 0, 0, NPROW ),
307     $                  DESCA( MB_ ), 0, 0, LCMP ), NQC0 ) ) *
308     $                  DESCA( MB_ ) ) + DESCA( MB_ ) * DESCA( MB_ )
309            ELSE
310               LWMIN = MAX( ( DESCA( MB_ ) * ( DESCA( MB_ ) - 1 ) ) / 2,
311     $                      ( MPC0 + NQC0 ) * DESCA( MB_ ) ) +
312     $                 DESCA( MB_ ) * DESCA( MB_ )
313            END IF
314*
315            WORK( 1 ) = DBLE( LWMIN )
316            LQUERY = ( LWORK.EQ.-1 )
317            IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
318               INFO = -1
319            ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
320               INFO = -2
321            ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
322               INFO = -5
323            ELSE IF( LEFT .AND. DESCA( NB_ ).NE.DESCC( MB_ ) ) THEN
324               INFO = -(900+NB_)
325            ELSE IF( LEFT .AND. ICOFFA.NE.IROFFC ) THEN
326               INFO = -12
327            ELSE IF( .NOT.LEFT .AND. ICOFFA.NE.ICOFFC ) THEN
328               INFO = -13
329            ELSE IF( .NOT.LEFT .AND. IACOL.NE.ICCOL ) THEN
330               INFO = -13
331            ELSE IF( .NOT.LEFT .AND. DESCA( NB_ ).NE.DESCC( NB_ ) ) THEN
332               INFO = -(1400+NB_)
333            ELSE IF( ICTXT.NE.DESCC( CTXT_ ) ) THEN
334               INFO = -(1400+CTXT_)
335            ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
336               INFO = -16
337            END IF
338         END IF
339         IF( LEFT ) THEN
340            IDUM1( 1 ) = ICHAR( 'L' )
341         ELSE
342            IDUM1( 1 ) = ICHAR( 'R' )
343         END IF
344         IDUM2( 1 ) = 1
345         IF( NOTRAN ) THEN
346            IDUM1( 2 ) = ICHAR( 'N' )
347         ELSE
348            IDUM1( 2 ) = ICHAR( 'T' )
349         END IF
350         IDUM2( 2 ) = 2
351         IDUM1( 3 ) = K
352         IDUM2( 3 ) = 5
353         IF( LWORK.EQ.-1 ) THEN
354            IDUM1( 4 ) = -1
355         ELSE
356            IDUM1( 4 ) = 1
357         END IF
358         IDUM2( 4 ) = 16
359         IF( LEFT ) THEN
360            CALL PCHK2MAT( K, 5, M, 3, IA, JA, DESCA, 9, M, 3, N, 4,
361     $                     IC, JC, DESCC, 14, 4, IDUM1, IDUM2, INFO )
362         ELSE
363            CALL PCHK2MAT( K, 5, N, 4, IA, JA, DESCA, 9, M, 3, N, 4,
364     $                     IC, JC, DESCC, 14, 4, IDUM1, IDUM2, INFO )
365         END IF
366      END IF
367*
368      IF( INFO.NE.0 ) THEN
369         CALL PXERBLA( ICTXT, 'PDORMRQ', -INFO )
370         RETURN
371      ELSE IF( LQUERY ) THEN
372         RETURN
373      END IF
374*
375*     Quick return if possible
376*
377      IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 )
378     $   RETURN
379*
380      CALL PB_TOPGET( ICTXT, 'Broadcast', 'Rowwise', ROWBTOP )
381      CALL PB_TOPGET( ICTXT, 'Broadcast', 'Columnwise', COLBTOP )
382*
383      IF( ( LEFT .AND. .NOT.NOTRAN ) .OR.
384     $    ( .NOT.LEFT .AND. NOTRAN ) ) THEN
385         I1 = MIN( ICEIL( IA, DESCA( MB_ ) ) * DESCA( MB_ ), IA+K-1 )
386     $                    + 1
387         I2 = IA + K - 1
388         I3 = DESCA( MB_ )
389      ELSE
390         I1 = MAX( ( (IA+K-2) / DESCA( MB_ ) ) * DESCA( MB_ ) + 1, IA )
391         I2 = MIN( ICEIL( IA, DESCA( MB_ ) ) * DESCA( MB_ ), IA+K-1 )
392     $                    + 1
393         I3 = -DESCA( MB_ )
394      END IF
395*
396      IF( LEFT ) THEN
397         NI = N
398      ELSE
399         MI = M
400         CALL PB_TOPSET( ICTXT, 'Broadcast', 'Rowwise', ' ' )
401         IF( NOTRAN ) THEN
402            CALL PB_TOPSET( ICTXT, 'Broadcast', 'Columnwise', 'I-ring' )
403         ELSE
404            CALL PB_TOPSET( ICTXT, 'Broadcast', 'Columnwise', 'D-ring' )
405         END IF
406      END IF
407*
408      IF( NOTRAN ) THEN
409         TRANST = 'T'
410      ELSE
411         TRANST = 'N'
412      END IF
413*
414      IF( ( LEFT .AND. .NOT.NOTRAN ) .OR.
415     $    ( .NOT.LEFT .AND. NOTRAN ) ) THEN
416         IB = I1 - IA
417         IF( LEFT ) THEN
418            MI = M - K + IB
419         ELSE
420            NI = N - K + IB
421         END IF
422         CALL PDORMR2( SIDE, TRANS, MI, NI, IB, A, IA, JA, DESCA, TAU,
423     $                 C, IC, JC, DESCC, WORK, LWORK, IINFO )
424      END IF
425*
426      IPW = DESCA( MB_ )*DESCA( MB_ ) + 1
427      DO 10 I = I1, I2, I3
428         IB = MIN( DESCA( MB_ ), K-I+IA )
429*
430*        Form the triangular factor of the block reflector
431*        H = H(i+ib-1) . . . H(i+1) H(i)
432*
433         CALL PDLARFT( 'Backward', 'Rowwise', NQ-K+I+IB-IA, IB,
434     $                 A, I, JA, DESCA, TAU, WORK, WORK( IPW ) )
435         IF( LEFT ) THEN
436*
437*           H or H' is applied to C(ic:ic+m-k+i+ib-ia-1,jc:jc+n-1)
438*
439            MI = M - K + I + IB - IA
440         ELSE
441*
442*           H or H' is applied to C(ic:ic+m-1,jc:jc+n-k+i+ib-ia-1)
443*
444            NI = N - K + I + IB - IA
445         END IF
446*
447*        Apply H or H'
448*
449         CALL PDLARFB( SIDE, TRANST, 'Backward', 'Rowwise', MI, NI,
450     $                IB, A, I, JA, DESCA, WORK, C, IC, JC, DESCC,
451     $                WORK( IPW ) )
452   10 CONTINUE
453*
454      IF( ( RIGHT .AND. TRAN ) .OR.
455     $    ( LEFT .AND. NOTRAN ) ) THEN
456         IB = I2 - IA
457         IF( LEFT ) THEN
458            MI = M - K + IB
459         ELSE
460            NI = N - K + IB
461         END IF
462         CALL PDORMR2( SIDE, TRANS, MI, NI, IB, A, IA, JA, DESCA, TAU,
463     $                 C, IC, JC, DESCC, WORK, LWORK, IINFO )
464      END IF
465*
466      CALL PB_TOPSET( ICTXT, 'Broadcast', 'Rowwise', ROWBTOP )
467      CALL PB_TOPSET( ICTXT, 'Broadcast', 'Columnwise', COLBTOP )
468*
469      WORK( 1 ) = DBLE( LWMIN )
470*
471      RETURN
472*
473*     End of PDORMRQ
474*
475      END
476