1      SUBROUTINE PDPOTRF( UPLO, N, A, IA, JA, DESCA, INFO )
2*
3*  -- ScaLAPACK routine (version 1.7) --
4*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
5*     and University of California, Berkeley.
6*     May 25, 2001
7*
8*     .. Scalar Arguments ..
9      CHARACTER          UPLO
10      INTEGER            IA, INFO, JA, N
11*     ..
12*     .. Array Arguments ..
13      INTEGER            DESCA( * )
14      DOUBLE PRECISION   A( * )
15*     ..
16*
17*  Purpose
18*  =======
19*
20*  PDPOTRF computes the Cholesky factorization of an N-by-N real
21*  symmetric positive definite distributed matrix sub( A ) denoting
22*  A(IA:IA+N-1, JA:JA+N-1).
23*
24*  The factorization has the form
25*
26*            sub( A ) = U' * U ,  if UPLO = 'U', or
27*
28*            sub( A ) = L  * L',  if UPLO = 'L',
29*
30*  where U is an upper triangular matrix and L is lower triangular.
31*
32*  Notes
33*  =====
34*
35*  Each global data object is described by an associated description
36*  vector.  This vector stores the information required to establish
37*  the mapping between an object element and its corresponding process
38*  and memory location.
39*
40*  Let A be a generic term for any 2D block cyclicly distributed array.
41*  Such a global array has an associated description vector DESCA.
42*  In the following comments, the character _ should be read as
43*  "of the global array".
44*
45*  NOTATION        STORED IN      EXPLANATION
46*  --------------- -------------- --------------------------------------
47*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
48*                                 DTYPE_A = 1.
49*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
50*                                 the BLACS process grid A is distribu-
51*                                 ted over. The context itself is glo-
52*                                 bal, but the handle (the integer
53*                                 value) may vary.
54*  M_A    (global) DESCA( M_ )    The number of rows in the global
55*                                 array A.
56*  N_A    (global) DESCA( N_ )    The number of columns in the global
57*                                 array A.
58*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
59*                                 the rows of the array.
60*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
61*                                 the columns of the array.
62*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
63*                                 row of the array A is distributed.
64*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
65*                                 first column of the array A is
66*                                 distributed.
67*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
68*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
69*
70*  Let K be the number of rows or columns of a distributed matrix,
71*  and assume that its process grid has dimension p x q.
72*  LOCr( K ) denotes the number of elements of K that a process
73*  would receive if K were distributed over the p processes of its
74*  process column.
75*  Similarly, LOCc( K ) denotes the number of elements of K that a
76*  process would receive if K were distributed over the q processes of
77*  its process row.
78*  The values of LOCr() and LOCc() may be determined via a call to the
79*  ScaLAPACK tool function, NUMROC:
80*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
81*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
82*  An upper bound for these quantities may be computed by:
83*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
84*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
85*
86*  This routine requires square block decomposition ( MB_A = NB_A ).
87*
88*  Arguments
89*  =========
90*
91*  UPLO    (global input) CHARACTER
92*          = 'U':  Upper triangle of sub( A ) is stored;
93*          = 'L':  Lower triangle of sub( A ) is stored.
94*
95*  N       (global input) INTEGER
96*          The number of rows and columns to be operated on, i.e. the
97*          order of the distributed submatrix sub( A ). N >= 0.
98*
99*  A       (local input/local output) DOUBLE PRECISION pointer into the
100*          local memory to an array of dimension (LLD_A, LOCc(JA+N-1)).
101*          On entry, this array contains the local pieces of the
102*          N-by-N symmetric distributed matrix sub( A ) to be factored.
103*          If UPLO = 'U', the leading N-by-N upper triangular part of
104*          sub( A ) contains the upper triangular part of the matrix,
105*          and its strictly lower triangular part is not referenced.
106*          If UPLO = 'L', the leading N-by-N lower triangular part of
107*          sub( A ) contains the lower triangular part of the distribu-
108*          ted matrix, and its strictly upper triangular part is not
109*          referenced. On exit, if UPLO = 'U', the upper triangular
110*          part of the distributed matrix contains the Cholesky factor
111*          U, if UPLO = 'L', the lower triangular part of the distribu-
112*          ted matrix contains the Cholesky factor L.
113*
114*  IA      (global input) INTEGER
115*          The row index in the global array A indicating the first
116*          row of sub( A ).
117*
118*  JA      (global input) INTEGER
119*          The column index in the global array A indicating the
120*          first column of sub( A ).
121*
122*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
123*          The array descriptor for the distributed matrix A.
124*
125*  INFO    (global output) INTEGER
126*          = 0:  successful exit
127*          < 0:  If the i-th argument is an array and the j-entry had
128*                an illegal value, then INFO = -(i*100+j), if the i-th
129*                argument is a scalar and had an illegal value, then
130*                INFO = -i.
131*          > 0:  If INFO = K, the leading minor of order K,
132*                A(IA:IA+K-1,JA:JA+K-1) is not positive definite, and
133*                the factorization could not be completed.
134*
135*  =====================================================================
136*
137*     .. Parameters ..
138      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
139     $                   LLD_, MB_, M_, NB_, N_, RSRC_
140      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
141     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
142     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
143      DOUBLE PRECISION   ONE
144      PARAMETER          ( ONE = 1.0D+0 )
145*     ..
146*     .. Local Scalars ..
147      LOGICAL            UPPER
148      CHARACTER          COLBTOP, ROWBTOP
149      INTEGER            I, ICOFF, ICTXT, IROFF, J, JB, JN, MYCOL,
150     $                   MYROW, NPCOL, NPROW
151*     ..
152*     .. Local Arrays ..
153      INTEGER            IDUM1( 1 ), IDUM2( 1 )
154*     ..
155*     .. External Subroutines ..
156      EXTERNAL           BLACS_GRIDINFO, CHK1MAT, PCHK1MAT, PB_TOPGET,
157     $                   PB_TOPSET, PDPOTF2, PDSYRK, PDTRSM,
158     $                   PXERBLA
159*     ..
160*     .. External Functions ..
161      LOGICAL            LSAME
162      INTEGER            ICEIL
163      EXTERNAL           ICEIL, LSAME
164*     ..
165*     .. Intrinsic Functions ..
166      INTRINSIC          ICHAR, MIN, MOD
167*     ..
168*     .. Executable Statements ..
169*
170*     Get grid parameters
171*
172      ICTXT = DESCA( CTXT_ )
173      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
174*
175*     Test the input parameters
176*
177      INFO = 0
178      IF( NPROW.EQ.-1 ) THEN
179         INFO = -(600+CTXT_)
180      ELSE
181         CALL CHK1MAT( N, 2, N, 2, IA, JA, DESCA, 6, INFO )
182         UPPER = LSAME( UPLO, 'U' )
183         IF( INFO.EQ.0 ) THEN
184            IROFF = MOD( IA-1, DESCA( MB_ ) )
185            ICOFF = MOD( JA-1, DESCA( NB_ ) )
186            IF ( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
187               INFO = -1
188            ELSE IF( IROFF.NE.0 ) THEN
189               INFO = -4
190            ELSE IF( ICOFF.NE.0 ) THEN
191               INFO = -5
192            ELSE IF( DESCA( MB_ ).NE.DESCA( NB_ ) ) THEN
193               INFO = -(600+NB_)
194            END IF
195         END IF
196         IF( UPPER ) THEN
197            IDUM1( 1 ) = ICHAR( 'U' )
198         ELSE
199            IDUM1( 1 ) = ICHAR( 'L' )
200         END IF
201         IDUM2( 1 ) = 1
202         CALL PCHK1MAT( N, 2, N, 2, IA, JA, DESCA, 6, 1, IDUM1, IDUM2,
203     $                  INFO )
204      END IF
205*
206      IF( INFO.NE.0 ) THEN
207         CALL PXERBLA( ICTXT, 'PDPOTRF', -INFO )
208         RETURN
209      END IF
210*
211*     Quick return if possible
212*
213      IF( N.EQ.0 )
214     $   RETURN
215*
216      CALL PB_TOPGET( ICTXT, 'Broadcast', 'Rowwise', ROWBTOP )
217      CALL PB_TOPGET( ICTXT, 'Broadcast', 'Columnwise', COLBTOP )
218*
219      IF( UPPER ) THEN
220*
221*        Split-ring topology for the communication along process
222*        columns, 1-tree topology along process rows.
223*
224         CALL PB_TOPSET( ICTXT, 'Broadcast', 'Rowwise', ' ' )
225         CALL PB_TOPSET( ICTXT, 'Broadcast', 'Columnwise', 'S-ring' )
226*
227*        A is upper triangular, compute Cholesky factorization A = U'*U.
228*
229*        Handle the first block of columns separately
230*
231         JN = MIN( ICEIL( JA, DESCA( NB_ ) )*DESCA(NB_), JA+N-1 )
232         JB = JN - JA + 1
233*
234*        Perform unblocked Cholesky factorization on JB block
235*
236         CALL PDPOTF2( UPLO, JB, A, IA, JA, DESCA, INFO )
237         IF( INFO.NE.0 )
238     $      GO TO 30
239*
240         IF( JB+1.LE.N ) THEN
241*
242*           Form the row panel of U using the triangular solver
243*
244            CALL PDTRSM( 'Left', UPLO, 'Transpose', 'Non-Unit',
245     $                   JB, N-JB, ONE, A, IA, JA, DESCA, A, IA, JA+JB,
246     $                   DESCA )
247*
248*           Update the trailing matrix, A = A - U'*U
249*
250            CALL PDSYRK( UPLO, 'Transpose', N-JB, JB, -ONE, A, IA,
251     $                   JA+JB, DESCA, ONE, A, IA+JB, JA+JB, DESCA )
252         END IF
253*
254*        Loop over remaining block of columns
255*
256         DO 10 J = JN+1, JA+N-1, DESCA( NB_ )
257            JB = MIN( N-J+JA, DESCA( NB_ ) )
258            I = IA + J - JA
259*
260*           Perform unblocked Cholesky factorization on JB block
261*
262            CALL PDPOTF2( UPLO, JB, A, I, J, DESCA, INFO )
263            IF( INFO.NE.0 ) THEN
264               INFO = INFO + J - JA
265               GO TO 30
266            END IF
267*
268            IF( J-JA+JB+1.LE.N ) THEN
269*
270*              Form the row panel of U using the triangular solver
271*
272               CALL PDTRSM( 'Left', UPLO, 'Transpose', 'Non-Unit',
273     $                      JB, N-J-JB+JA, ONE, A, I, J, DESCA, A,
274     $                      I, J+JB, DESCA )
275*
276*              Update the trailing matrix, A = A - U'*U
277*
278               CALL PDSYRK( UPLO, 'Transpose', N-J-JB+JA, JB,
279     $                      -ONE, A, I, J+JB, DESCA, ONE, A, I+JB,
280     $                      J+JB, DESCA )
281            END IF
282   10    CONTINUE
283*
284      ELSE
285*
286*        1-tree topology for the communication along process columns,
287*        Split-ring topology along process rows.
288*
289         CALL PB_TOPSET( ICTXT, 'Broadcast', 'Rowwise', 'S-ring' )
290         CALL PB_TOPSET( ICTXT, 'Broadcast', 'Columnwise', ' ' )
291*
292*        A is lower triangular, compute Cholesky factorization A = L*L'
293*        (right-looking)
294*
295*        Handle the first block of columns separately
296*
297         JN = MIN( ICEIL( JA, DESCA( NB_ ) )*DESCA( NB_ ), JA+N-1 )
298         JB = JN - JA + 1
299*
300*        Perform unblocked Cholesky factorization on JB block
301*
302         CALL PDPOTF2( UPLO, JB, A, IA, JA, DESCA, INFO )
303         IF( INFO.NE.0 )
304     $      GO TO 30
305*
306         IF( JB+1.LE.N ) THEN
307*
308*           Form the column panel of L using the triangular solver
309*
310            CALL PDTRSM( 'Right', UPLO, 'Transpose', 'Non-Unit',
311     $                   N-JB, JB, ONE, A, IA, JA, DESCA, A, IA+JB, JA,
312     $                   DESCA )
313*
314*           Update the trailing matrix, A = A - L*L'
315*
316            CALL PDSYRK( UPLO, 'No Transpose', N-JB, JB, -ONE, A, IA+JB,
317     $                   JA, DESCA, ONE, A, IA+JB, JA+JB, DESCA )
318*
319         END IF
320*
321         DO 20 J = JN+1, JA+N-1, DESCA( NB_ )
322            JB = MIN( N-J+JA, DESCA( NB_ ) )
323            I = IA + J - JA
324*
325*           Perform unblocked Cholesky factorization on JB block
326*
327            CALL PDPOTF2( UPLO, JB, A, I, J, DESCA, INFO )
328            IF( INFO.NE.0 ) THEN
329               INFO = INFO + J - JA
330               GO TO 30
331            END IF
332*
333            IF( J-JA+JB+1.LE.N ) THEN
334*
335*              Form the column panel of L using the triangular solver
336*
337               CALL PDTRSM( 'Right', UPLO, 'Transpose', 'Non-Unit',
338     $                      N-J-JB+JA, JB, ONE, A, I, J, DESCA, A, I+JB,
339     $                      J, DESCA )
340*
341*              Update the trailing matrix, A = A - L*L'
342*
343               CALL PDSYRK( UPLO, 'No Transpose', N-J-JB+JA, JB, -ONE,
344     $                      A, I+JB, J, DESCA, ONE, A, I+JB, J+JB,
345     $                      DESCA )
346*
347            END IF
348   20    CONTINUE
349*
350      END IF
351*
352   30 CONTINUE
353*
354      CALL PB_TOPSET( ICTXT, 'Broadcast', 'Rowwise', ROWBTOP )
355      CALL PB_TOPSET( ICTXT, 'Broadcast', 'Columnwise', COLBTOP )
356*
357      RETURN
358*
359*     End of PDPOTRF
360*
361      END
362