1      SUBROUTINE PSORMBR( VECT, SIDE, TRANS, M, N, K, A, IA, JA, DESCA,
2     $                    TAU, C, IC, JC, DESCC, WORK, LWORK, INFO )
3*
4*  -- ScaLAPACK routine (version 1.7) --
5*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
6*     and University of California, Berkeley.
7*     May 1, 1997
8*
9*     .. Scalar Arguments ..
10      CHARACTER          SIDE, TRANS, VECT
11      INTEGER            IA, IC, INFO, JA, JC, K, LWORK, M, N
12*     ..
13*     .. Array Arguments ..
14      INTEGER            DESCA( * ), DESCC( * )
15      REAL               A( * ), C( * ), TAU( * ), WORK( * )
16*     ..
17*
18*  Purpose
19*  =======
20*
21*  If VECT = 'Q', PSORMBR overwrites the general real distributed M-by-N
22*  matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with
23*
24*                       SIDE = 'L'           SIDE = 'R'
25*  TRANS = 'N':      Q * sub( C )          sub( C ) * Q
26*  TRANS = 'T':      Q**T * sub( C )       sub( C ) * Q**T
27*
28*  If VECT = 'P', PSORMBR overwrites sub( C ) with
29*
30*                       SIDE = 'L'           SIDE = 'R'
31*  TRANS = 'N':      P * sub( C )          sub( C ) * P
32*  TRANS = 'T':      P**T * sub( C )       sub( C ) * P**T
33*
34*  Here Q and P**T are the orthogonal distributed matrices determined by
35*  PSGEBRD when reducing a real distributed matrix A(IA:*,JA:*) to
36*  bidiagonal form: A(IA:*,JA:*) = Q * B * P**T. Q and P**T are defined
37*  as products of elementary reflectors H(i) and G(i) respectively.
38*
39*  Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the
40*  order of the orthogonal matrix Q or P**T that is applied.
41*
42*  If VECT = 'Q', A(IA:*,JA:*) is assumed to have been an NQ-by-K
43*  matrix:
44*  if nq >= k, Q = H(1) H(2) . . . H(k);
45*  if nq < k, Q = H(1) H(2) . . . H(nq-1).
46*
47*  If VECT = 'P', A(IA:*,JA:*) is assumed to have been a K-by-NQ
48*  matrix:
49*  if k < nq, P = G(1) G(2) . . . G(k);
50*  if k >= nq, P = G(1) G(2) . . . G(nq-1).
51*
52*  Notes
53*  =====
54*
55*  Each global data object is described by an associated description
56*  vector.  This vector stores the information required to establish
57*  the mapping between an object element and its corresponding process
58*  and memory location.
59*
60*  Let A be a generic term for any 2D block cyclicly distributed array.
61*  Such a global array has an associated description vector DESCA.
62*  In the following comments, the character _ should be read as
63*  "of the global array".
64*
65*  NOTATION        STORED IN      EXPLANATION
66*  --------------- -------------- --------------------------------------
67*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
68*                                 DTYPE_A = 1.
69*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
70*                                 the BLACS process grid A is distribu-
71*                                 ted over. The context itself is glo-
72*                                 bal, but the handle (the integer
73*                                 value) may vary.
74*  M_A    (global) DESCA( M_ )    The number of rows in the global
75*                                 array A.
76*  N_A    (global) DESCA( N_ )    The number of columns in the global
77*                                 array A.
78*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
79*                                 the rows of the array.
80*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
81*                                 the columns of the array.
82*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
83*                                 row of the array A is distributed.
84*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
85*                                 first column of the array A is
86*                                 distributed.
87*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
88*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
89*
90*  Let K be the number of rows or columns of a distributed matrix,
91*  and assume that its process grid has dimension p x q.
92*  LOCr( K ) denotes the number of elements of K that a process
93*  would receive if K were distributed over the p processes of its
94*  process column.
95*  Similarly, LOCc( K ) denotes the number of elements of K that a
96*  process would receive if K were distributed over the q processes of
97*  its process row.
98*  The values of LOCr() and LOCc() may be determined via a call to the
99*  ScaLAPACK tool function, NUMROC:
100*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
101*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
102*  An upper bound for these quantities may be computed by:
103*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
104*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
105*
106*  Arguments
107*  =========
108*
109*  VECT    (global input) CHARACTER
110*          = 'Q': apply Q or Q**T;
111*          = 'P': apply P or P**T.
112*
113*  SIDE    (global input) CHARACTER
114*          = 'L': apply Q, Q**T, P or P**T from the Left;
115*          = 'R': apply Q, Q**T, P or P**T from the Right.
116*
117*  TRANS   (global input) CHARACTER
118*          = 'N':  No transpose, apply Q or P;
119*          = 'T':  Transpose, apply Q**T or P**T.
120*
121*  M       (global input) INTEGER
122*          The number of rows to be operated on i.e the number of rows
123*          of the distributed submatrix sub( C ). M >= 0.
124*
125*  N       (global input) INTEGER
126*          The number of columns to be operated on i.e the number of
127*          columns of the distributed submatrix sub( C ). N >= 0.
128*
129*  K       (global input) INTEGER
130*          If VECT = 'Q', the number of columns in the original
131*          distributed matrix reduced by PSGEBRD.
132*          If VECT = 'P', the number of rows in the original
133*          distributed matrix reduced by PSGEBRD.
134*          K >= 0.
135*
136*  A       (local input) REAL pointer into the local memory
137*          to an array of dimension (LLD_A,LOCc(JA+MIN(NQ,K)-1)) if
138*          VECT='Q', and (LLD_A,LOCc(JA+NQ-1)) if VECT = 'P'. NQ = M
139*          if SIDE = 'L', and NQ = N otherwise. The vectors which
140*          define the elementary reflectors H(i) and G(i), whose
141*          products determine the matrices Q and P, as returned by
142*          PSGEBRD.
143*          If VECT = 'Q', LLD_A >= max(1,LOCr(IA+NQ-1));
144*          if VECT = 'P', LLD_A >= max(1,LOCr(IA+MIN(NQ,K)-1)).
145*
146*  IA      (global input) INTEGER
147*          The row index in the global array A indicating the first
148*          row of sub( A ).
149*
150*  JA      (global input) INTEGER
151*          The column index in the global array A indicating the
152*          first column of sub( A ).
153*
154*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
155*          The array descriptor for the distributed matrix A.
156*
157*  TAU     (local input) REAL array, dimension
158*          LOCc(JA+MIN(NQ,K)-1) if VECT = 'Q', LOCr(IA+MIN(NQ,K)-1) if
159*          VECT = 'P', TAU(i) must contain the scalar factor of the
160*          elementary  reflector H(i) or G(i), which determines Q or P,
161*          as returned by PDGEBRD in its array argument TAUQ or TAUP.
162*          TAU is tied to the distributed matrix A.
163*
164*  C       (local input/local output) REAL pointer into the
165*          local memory to an array of dimension (LLD_C,LOCc(JC+N-1)).
166*          On entry, the local pieces of the distributed matrix sub(C).
167*          On exit, if VECT='Q', sub( C ) is overwritten by Q*sub( C )
168*          or Q'*sub( C ) or sub( C )*Q' or sub( C )*Q; if VECT='P,
169*          sub( C ) is overwritten by P*sub( C ) or P'*sub( C ) or
170*          sub( C )*P or sub( C )*P'.
171*
172*  IC      (global input) INTEGER
173*          The row index in the global array C indicating the first
174*          row of sub( C ).
175*
176*  JC      (global input) INTEGER
177*          The column index in the global array C indicating the
178*          first column of sub( C ).
179*
180*  DESCC   (global and local input) INTEGER array of dimension DLEN_.
181*          The array descriptor for the distributed matrix C.
182*
183*  WORK    (local workspace/local output) REAL array,
184*                                                     dimension (LWORK)
185*          On exit, WORK(1) returns the minimal and optimal LWORK.
186*
187*  LWORK   (local or global input) INTEGER
188*          The dimension of the array WORK.
189*          LWORK is local input and must be at least
190*          If SIDE = 'L',
191*            NQ = M;
192*            if( (VECT = 'Q' and NQ >= K) or (VECT <> 'Q' and NQ > K) ),
193*               IAA=IA; JAA=JA; MI=M; NI=N; ICC=IC; JCC=JC;
194*            else
195*               IAA=IA+1; JAA=JA; MI=M-1; NI=N; ICC=IC+1; JCC=JC;
196*            end if
197*          else if SIDE = 'R',
198*            NQ = N;
199*            if( (VECT = 'Q' and NQ >= K) or (VECT <> 'Q' and NQ > K) ),
200*               IAA=IA; JAA=JA; MI=M; NI=N; ICC=IC; JCC=JC;
201*            else
202*               IAA=IA; JAA=JA+1; MI=M; NI=N-1; ICC=IC; JCC=JC+1;
203*            end if
204*          end if
205*
206*          If VECT = 'Q',
207*            If SIDE = 'L',
208*              LWORK >= MAX( (NB_A*(NB_A-1))/2, (NqC0 + MpC0)*NB_A ) +
209*                       NB_A * NB_A
210*            else if SIDE = 'R',
211*              LWORK >= MAX( (NB_A*(NB_A-1))/2, ( NqC0 + MAX( NpA0 +
212*                       NUMROC( NUMROC( NI+ICOFFC, NB_A, 0, 0, NPCOL ),
213*                               NB_A, 0, 0, LCMQ ), MpC0 ) )*NB_A ) +
214*                       NB_A * NB_A
215*            end if
216*          else if VECT <> 'Q',
217*            if SIDE = 'L',
218*              LWORK >= MAX( (MB_A*(MB_A-1))/2, ( MpC0 + MAX( MqA0 +
219*                       NUMROC( NUMROC( MI+IROFFC, MB_A, 0, 0, NPROW ),
220*                               MB_A, 0, 0, LCMP ), NqC0 ) )*MB_A ) +
221*                       MB_A * MB_A
222*            else if SIDE = 'R',
223*              LWORK >= MAX( (MB_A*(MB_A-1))/2, (MpC0 + NqC0)*MB_A ) +
224*                       MB_A * MB_A
225*            end if
226*          end if
227*
228*          where LCMP = LCM / NPROW, LCMQ = LCM / NPCOL, with
229*          LCM = ICLM( NPROW, NPCOL ),
230*
231*          IROFFA = MOD( IAA-1, MB_A ), ICOFFA = MOD( JAA-1, NB_A ),
232*          IAROW = INDXG2P( IAA, MB_A, MYROW, RSRC_A, NPROW ),
233*          IACOL = INDXG2P( JAA, NB_A, MYCOL, CSRC_A, NPCOL ),
234*          MqA0 = NUMROC( MI+ICOFFA, NB_A, MYCOL, IACOL, NPCOL ),
235*          NpA0 = NUMROC( NI+IROFFA, MB_A, MYROW, IAROW, NPROW ),
236*
237*          IROFFC = MOD( ICC-1, MB_C ), ICOFFC = MOD( JCC-1, NB_C ),
238*          ICROW = INDXG2P( ICC, MB_C, MYROW, RSRC_C, NPROW ),
239*          ICCOL = INDXG2P( JCC, NB_C, MYCOL, CSRC_C, NPCOL ),
240*          MpC0 = NUMROC( MI+IROFFC, MB_C, MYROW, ICROW, NPROW ),
241*          NqC0 = NUMROC( NI+ICOFFC, NB_C, MYCOL, ICCOL, NPCOL ),
242*
243*          INDXG2P and NUMROC are ScaLAPACK tool functions;
244*          MYROW, MYCOL, NPROW and NPCOL can be determined by calling
245*          the subroutine BLACS_GRIDINFO.
246*
247*          If LWORK = -1, then LWORK is global input and a workspace
248*          query is assumed; the routine only calculates the minimum
249*          and optimal size for all work arrays. Each of these
250*          values is returned in the first entry of the corresponding
251*          work array, and no error message is issued by PXERBLA.
252*
253*
254*  INFO    (global output) INTEGER
255*          = 0:  successful exit
256*          < 0:  If the i-th argument is an array and the j-entry had
257*                an illegal value, then INFO = -(i*100+j), if the i-th
258*                argument is a scalar and had an illegal value, then
259*                INFO = -i.
260*
261*  Alignment requirements
262*  ======================
263*
264*  The distributed submatrices A(IA:*, JA:*) and C(IC:IC+M-1,JC:JC+N-1)
265*  must verify some alignment properties, namely the following
266*  expressions should be true:
267*
268*  If VECT = 'Q',
269*    If SIDE = 'L',
270*      ( MB_A.EQ.MB_C .AND. IROFFA.EQ.IROFFC .AND. IAROW.EQ.ICROW )
271*     If SIDE = 'R',
272*      ( MB_A.EQ.NB_C .AND. IROFFA.EQ.ICOFFC )
273*  else
274*     If SIDE = 'L',
275*       ( MB_A.EQ.MB_C .AND. ICOFFA.EQ.IROFFC )
276*     If SIDE = 'R',
277*       ( NB_A.EQ.NB_C .AND. ICOFFA.EQ.ICOFFC .AND. IACOL.EQ.ICCOL )
278*  end if
279*
280*  =====================================================================
281*
282*     .. Parameters ..
283      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
284     $                   LLD_, MB_, M_, NB_, N_, RSRC_
285      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
286     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
287     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
288*     ..
289*     .. Local Scalars ..
290      LOGICAL            APPLYQ, LEFT, LQUERY, NOTRAN
291      CHARACTER          TRANST
292      INTEGER            IAA, IACOL, IAROW, ICC, ICCOL, ICOFFA, ICOFFC,
293     $                   ICROW, ICTXT, IINFO, IROFFA, IROFFC, JAA, JCC,
294     $                   LCM, LCMP, LCMQ, LWMIN, MI, MPC0, MQA0, MYCOL,
295     $                   MYROW, NI, NPA0, NPCOL, NPROW, NQ, NQC0
296*     ..
297*     .. Local Arrays ..
298      INTEGER            IDUM1( 5 ), IDUM2( 5 )
299*     ..
300*     .. External Subroutines ..
301      EXTERNAL           BLACS_GRIDINFO, CHK1MAT, PCHK2MAT, PSORMLQ,
302     $                   PSORMQR, PXERBLA
303*     ..
304*     .. External Functions ..
305      LOGICAL            LSAME
306      INTEGER            ILCM, INDXG2P, NUMROC
307      EXTERNAL           ILCM, INDXG2P, LSAME, NUMROC
308*     ..
309*     .. Intrinsic Functions ..
310      INTRINSIC          ICHAR, MAX, MOD, REAL
311*     ..
312*     .. Executable Statements ..
313*
314*     Get grid parameters
315*
316      ICTXT = DESCA( CTXT_ )
317      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
318*
319*     Test the input parameters
320*
321      INFO = 0
322      IF( NPROW.EQ.-1 ) THEN
323         INFO = -(1000+CTXT_)
324      ELSE
325         APPLYQ = LSAME( VECT, 'Q' )
326         LEFT = LSAME( SIDE, 'L' )
327         NOTRAN = LSAME( TRANS, 'N' )
328*
329*        NQ is the order of Q or P
330*
331         IF( LEFT ) THEN
332            NQ = M
333            IF( ( APPLYQ .AND. NQ.GE.K ) .OR.
334     $          ( .NOT.APPLYQ .AND. NQ.GT.K ) ) THEN
335               IAA = IA
336               JAA = JA
337               MI = M
338               NI = N
339               ICC = IC
340               JCC = JC
341            ELSE
342               IAA = IA + 1
343               JAA = JA
344               MI = M - 1
345               NI = N
346               ICC = IC + 1
347               JCC = JC
348            END IF
349*
350            IF( APPLYQ ) THEN
351               CALL CHK1MAT( M, 4, K, 6, IA, JA, DESCA, 10, INFO )
352            ELSE
353               CALL CHK1MAT( K, 6, M, 4, IA, JA, DESCA, 10, INFO )
354            END IF
355         ELSE
356            NQ = N
357            IF( ( APPLYQ .AND. NQ.GE.K ) .OR.
358     $          ( .NOT.APPLYQ .AND. NQ.GT.K ) ) THEN
359               IAA = IA
360               JAA = JA
361               MI = M
362               NI = N
363               ICC = IC
364               JCC = JC
365            ELSE
366               IAA = IA
367               JAA = JA + 1
368               MI = M
369               NI = N - 1
370               ICC = IC
371               JCC = JC + 1
372            END IF
373*
374            IF( APPLYQ ) THEN
375               CALL CHK1MAT( N, 5, K, 6, IA, JA, DESCA, 10, INFO )
376            ELSE
377               CALL CHK1MAT( K, 6, N, 5, IA, JA, DESCA, 10, INFO )
378            END IF
379         END IF
380         CALL CHK1MAT( M, 4, N, 5, IC, JC, DESCC, 15, INFO )
381*
382         IF( INFO.EQ.0 ) THEN
383            IROFFA = MOD( IAA-1, DESCA( MB_ ) )
384            ICOFFA = MOD( JAA-1, DESCA( NB_ ) )
385            IROFFC = MOD( ICC-1, DESCC( MB_ ) )
386            ICOFFC = MOD( JCC-1, DESCC( NB_ ) )
387            IACOL = INDXG2P( JAA, DESCA( NB_ ), MYCOL, DESCA( CSRC_ ),
388     $                       NPCOL )
389            IAROW = INDXG2P( IAA, DESCA( MB_ ), MYROW, DESCA( RSRC_ ),
390     $                       NPROW )
391            ICROW = INDXG2P( ICC, DESCC( MB_ ), MYROW, DESCC( RSRC_ ),
392     $                       NPROW )
393            ICCOL = INDXG2P( JCC, DESCC( NB_ ), MYCOL, DESCC( CSRC_ ),
394     $                       NPCOL )
395            MPC0 = NUMROC( MI+IROFFC, DESCC( MB_ ), MYROW, ICROW,
396     $                     NPROW )
397            NQC0 = NUMROC( NI+ICOFFC, DESCC( NB_ ), MYCOL, ICCOL,
398     $                     NPCOL )
399*
400            IF( APPLYQ ) THEN
401               IF( LEFT ) THEN
402                  LWMIN = MAX( ( DESCA( NB_ ) * ( DESCA( NB_ ) - 1 ) )
403     $                    / 2, ( MPC0 + NQC0 ) * DESCA( NB_ ) ) +
404     $                    DESCA( NB_ ) * DESCA( NB_ )
405               ELSE
406                  NPA0 = NUMROC( NI+IROFFA, DESCA( MB_ ), MYROW, IAROW,
407     $                           NPROW )
408                  LCM = ILCM( NPROW, NPCOL )
409                  LCMQ = LCM / NPCOL
410                  LWMIN =  MAX( ( DESCA( NB_ ) * ( DESCA( NB_ ) - 1 ) )
411     $                     / 2, ( NQC0 + MAX( NPA0 + NUMROC( NUMROC(
412     $                     NI+ICOFFC, DESCA( NB_ ), 0, 0, NPCOL ),
413     $                     DESCA( NB_ ), 0, 0, LCMQ ), MPC0 ) ) *
414     $                     DESCA( NB_ ) ) + DESCA( NB_ ) * DESCA( NB_ )
415               END IF
416            ELSE
417*
418               IF( LEFT ) THEN
419                  MQA0 = NUMROC( MI+ICOFFA, DESCA( NB_ ), MYCOL, IACOL,
420     $                           NPCOL )
421                  LCM = ILCM( NPROW, NPCOL )
422                  LCMP = LCM / NPROW
423                  LWMIN =  MAX( ( DESCA( MB_ ) * ( DESCA( MB_ ) - 1 ) )
424     $                     / 2, ( MPC0 + MAX( MQA0 + NUMROC( NUMROC(
425     $                     MI+IROFFC, DESCA( MB_ ), 0, 0, NPROW ),
426     $                     DESCA( MB_ ), 0, 0, LCMP ), NQC0 ) ) *
427     $                     DESCA( MB_ ) ) + DESCA( MB_ ) * DESCA( MB_ )
428               ELSE
429                  LWMIN = MAX( ( DESCA( MB_ ) * ( DESCA( MB_ ) - 1 ) )
430     $                    / 2, ( MPC0 + NQC0 ) * DESCA( MB_ ) ) +
431     $                    DESCA( MB_ ) * DESCA( MB_ )
432               END IF
433*
434            END IF
435*
436            WORK( 1 ) = REAL( LWMIN )
437            LQUERY = ( LWORK.EQ.-1 )
438            IF( .NOT.APPLYQ .AND. .NOT.LSAME( VECT, 'P' ) ) THEN
439               INFO = -1
440            ELSE IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
441               INFO = -2
442            ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
443               INFO = -3
444            ELSE IF( K.LT.0 ) THEN
445               INFO = -6
446            ELSE IF( APPLYQ .AND. .NOT.LEFT .AND.
447     $               DESCA( MB_ ).NE.DESCC( NB_ ) ) THEN
448               INFO = -(1000+NB_)
449            ELSE IF( APPLYQ .AND. LEFT .AND. IROFFA.NE.IROFFC ) THEN
450               INFO = -13
451            ELSE IF( APPLYQ .AND. LEFT .AND. IAROW.NE.ICROW ) THEN
452               INFO = -13
453            ELSE IF( .NOT.APPLYQ .AND. LEFT .AND.
454     $               ICOFFA.NE.IROFFC ) THEN
455               INFO = -13
456            ELSE IF( .NOT.APPLYQ .AND. .NOT.LEFT .AND.
457     $               IACOL.NE.ICCOL ) THEN
458               INFO = -14
459            ELSE IF( APPLYQ .AND. .NOT.LEFT .AND.
460     $               IROFFA.NE.ICOFFC ) THEN
461               INFO = -14
462            ELSE IF( .NOT.APPLYQ .AND. .NOT.LEFT .AND.
463     $               ICOFFA.NE.ICOFFC ) THEN
464               INFO = -14
465            ELSE IF( APPLYQ .AND. LEFT .AND.
466     $               DESCA( MB_ ).NE.DESCC( MB_ ) ) THEN
467               INFO = -(1500+MB_)
468            ELSE IF( .NOT.APPLYQ .AND. LEFT .AND.
469     $               DESCA( MB_ ).NE.DESCC( MB_ ) ) THEN
470               INFO = -(1500+MB_)
471            ELSE IF( APPLYQ .AND. .NOT.LEFT .AND.
472     $               DESCA( MB_ ).NE.DESCC( NB_ ) ) THEN
473               INFO = -(1500+NB_)
474            ELSE IF( .NOT.APPLYQ .AND. .NOT.LEFT .AND.
475     $               DESCA( NB_ ).NE.DESCC( NB_ ) ) THEN
476               INFO = -(1500+NB_)
477            ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
478               INFO = -17
479            END IF
480         END IF
481*
482         IF( APPLYQ ) THEN
483            IDUM1( 1 ) = ICHAR( 'Q' )
484         ELSE
485            IDUM1( 1 ) = ICHAR( 'P' )
486         END IF
487         IDUM2( 1 ) = 1
488         IF( LEFT ) THEN
489            IDUM1( 2 ) = ICHAR( 'L' )
490         ELSE
491            IDUM1( 2 ) = ICHAR( 'R' )
492         END IF
493         IDUM2( 2 ) = 2
494         IF( NOTRAN ) THEN
495            IDUM1( 3 ) = ICHAR( 'N' )
496         ELSE
497            IDUM1( 3 ) = ICHAR( 'T' )
498         END IF
499         IDUM2( 3 ) = 3
500         IDUM1( 4 ) = K
501         IDUM2( 4 ) = 6
502         IF( LWORK.EQ.-1 ) THEN
503            IDUM1( 5 ) = -1
504         ELSE
505            IDUM1( 5 ) = 1
506         END IF
507         IDUM2( 5 ) = 17
508         IF( APPLYQ ) THEN
509            IF( LEFT ) THEN
510               CALL PCHK2MAT( M, 4, K, 6, IA, JA, DESCA, 10, M, 4, N,
511     $                        5, IC, JC, DESCC, 15, 5, IDUM1, IDUM2,
512     $                        INFO )
513            ELSE
514               CALL PCHK2MAT( N, 5, K, 6, IA, JA, DESCA, 10, M, 4, N,
515     $                        5, IC, JC, DESCC, 15, 5, IDUM1, IDUM2,
516     $                        INFO )
517            END IF
518         ELSE
519            IF( LEFT ) THEN
520               CALL PCHK2MAT( K, 6, M, 4, IA, JA, DESCA, 10, M, 4, N,
521     $                        5, IC, JC, DESCC, 15, 5, IDUM1, IDUM2,
522     $                        INFO )
523            ELSE
524               CALL PCHK2MAT( K, 6, N, 5, IA, JA, DESCA, 10, M, 4, N,
525     $                        5, IC, JC, DESCC, 15, 5, IDUM1, IDUM2,
526     $                        INFO )
527            END IF
528         END IF
529      END IF
530*
531      IF( INFO.NE.0 ) THEN
532         CALL PXERBLA( ICTXT, 'PSORMBR', -INFO )
533         RETURN
534      ELSE IF( LQUERY ) THEN
535         RETURN
536      END IF
537*
538*     Quick return if possible
539*
540      IF( M.EQ.0 .OR. N.EQ.0 )
541     $   RETURN
542*
543      IF( APPLYQ ) THEN
544*
545*        Apply Q
546*
547         IF( NQ.GE.K ) THEN
548*
549*           Q was determined by a call to PSGEBRD with nq >= k
550*
551            CALL PSORMQR( SIDE, TRANS, M, N, K, A, IA, JA, DESCA, TAU,
552     $                    C, IC, JC, DESCC, WORK, LWORK, IINFO )
553         ELSE IF( NQ.GT.1 ) THEN
554*
555*           Q was determined by a call to PSGEBRD with nq < k
556*
557            CALL PSORMQR( SIDE, TRANS, MI, NI, NQ-1, A, IA+1, JA, DESCA,
558     $                    TAU, C, ICC, JCC, DESCC, WORK, LWORK, IINFO )
559         END IF
560      ELSE
561*
562*        Apply P
563*
564         IF( NOTRAN ) THEN
565            TRANST = 'T'
566         ELSE
567            TRANST = 'N'
568         END IF
569         IF( NQ.GT.K ) THEN
570*
571*           P was determined by a call to PSGEBRD with nq > k
572*
573            CALL PSORMLQ( SIDE, TRANST, M, N, K, A, IA, JA, DESCA, TAU,
574     $                    C, IC, JC, DESCC, WORK, LWORK, IINFO )
575         ELSE IF( NQ.GT.1 ) THEN
576*
577*           P was determined by a call to PSGEBRD with nq <= k
578*
579            CALL PSORMLQ( SIDE, TRANST, MI, NI, NQ-1, A, IA, JA+1,
580     $                    DESCA, TAU, C, ICC, JCC, DESCC, WORK, LWORK,
581     $                    IINFO )
582         END IF
583      END IF
584*
585      WORK( 1 ) = REAL( LWMIN )
586*
587      RETURN
588*
589*     End of PSORMBR
590*
591      END
592