1      SUBROUTINE PZLASE2( UPLO, M, N, ALPHA, BETA, A, IA, JA, DESCA )
2*
3*  -- ScaLAPACK auxiliary routine (version 1.7) --
4*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
5*     and University of California, Berkeley.
6*     May 1, 1997
7*
8*     .. Scalar Arguments ..
9      CHARACTER          UPLO
10      INTEGER            IA, JA, M, N
11      COMPLEX*16         ALPHA, BETA
12*     ..
13*     .. Array Arguments ..
14      INTEGER            DESCA( * )
15      COMPLEX*16         A( * )
16*     ..
17*
18*  Purpose
19*  =======
20*
21*  PZLASE2 initializes an M-by-N distributed matrix sub( A ) denoting
22*  A(IA:IA+M-1,JA:JA+N-1) to BETA on the diagonal and ALPHA on the
23*  offdiagonals.  PZLASE2 requires that only dimension of the matrix
24*  operand is distributed.
25*
26*  Notes
27*  =====
28*
29*  Each global data object is described by an associated description
30*  vector.  This vector stores the information required to establish
31*  the mapping between an object element and its corresponding process
32*  and memory location.
33*
34*  Let A be a generic term for any 2D block cyclicly distributed array.
35*  Such a global array has an associated description vector DESCA.
36*  In the following comments, the character _ should be read as
37*  "of the global array".
38*
39*  NOTATION        STORED IN      EXPLANATION
40*  --------------- -------------- --------------------------------------
41*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
42*                                 DTYPE_A = 1.
43*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
44*                                 the BLACS process grid A is distribu-
45*                                 ted over. The context itself is glo-
46*                                 bal, but the handle (the integer
47*                                 value) may vary.
48*  M_A    (global) DESCA( M_ )    The number of rows in the global
49*                                 array A.
50*  N_A    (global) DESCA( N_ )    The number of columns in the global
51*                                 array A.
52*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
53*                                 the rows of the array.
54*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
55*                                 the columns of the array.
56*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
57*                                 row of the array A is distributed.
58*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
59*                                 first column of the array A is
60*                                 distributed.
61*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
62*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
63*
64*  Let K be the number of rows or columns of a distributed matrix,
65*  and assume that its process grid has dimension p x q.
66*  LOCr( K ) denotes the number of elements of K that a process
67*  would receive if K were distributed over the p processes of its
68*  process column.
69*  Similarly, LOCc( K ) denotes the number of elements of K that a
70*  process would receive if K were distributed over the q processes of
71*  its process row.
72*  The values of LOCr() and LOCc() may be determined via a call to the
73*  ScaLAPACK tool function, NUMROC:
74*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
75*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
76*  An upper bound for these quantities may be computed by:
77*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
78*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
79*
80*  Arguments
81*  =========
82*
83*  UPLO    (global input) CHARACTER
84*          Specifies the part of the distributed matrix sub( A ) to be
85*          set:
86*          = 'U':      Upper triangular part is set; the strictly lower
87*                      triangular part of sub( A ) is not changed;
88*          = 'L':      Lower triangular part is set; the strictly upper
89*                      triangular part of sub( A ) is not changed;
90*          Otherwise:  All of the matrix sub( A ) is set.
91*
92*  M       (global input) INTEGER
93*          The number of rows to be operated on i.e the number of rows
94*          of the distributed submatrix sub( A ). M >= 0.
95*
96*  N       (global input) INTEGER
97*          The number of columns to be operated on i.e the number of
98*          columns of the distributed submatrix sub( A ). N >= 0.
99*
100*  ALPHA   (global input) COMPLEX*16
101*          The constant to which the offdiagonal elements are to be
102*          set.
103*
104*  BETA    (global input) COMPLEX*16
105*          The constant to which the diagonal elements are to be set.
106*
107*  A       (local output) COMPLEX*16 pointer into the local memory
108*          to an array of dimension (LLD_A,LOCc(JA+N-1)).  This array
109*          contains the local pieces of the distributed matrix sub( A )
110*          to be set.  On exit, the leading M-by-N submatrix sub( A )
111*          is set as follows:
112*
113*          if UPLO = 'U', A(IA+i-1,JA+j-1) = ALPHA, 1<=i<=j-1, 1<=j<=N,
114*          if UPLO = 'L', A(IA+i-1,JA+j-1) = ALPHA, j+1<=i<=M, 1<=j<=N,
115*          otherwise,     A(IA+i-1,JA+j-1) = ALPHA, 1<=i<=M, 1<=j<=N,
116*                                                   IA+i.NE.JA+j,
117*          and, for all UPLO, A(IA+i-1,JA+i-1) = BETA, 1<=i<=min(M,N).
118*
119*  IA      (global input) INTEGER
120*          The row index in the global array A indicating the first
121*          row of sub( A ).
122*
123*  JA      (global input) INTEGER
124*          The column index in the global array A indicating the
125*          first column of sub( A ).
126*
127*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
128*          The array descriptor for the distributed matrix A.
129*
130*  =====================================================================
131*
132*     .. Parameters ..
133      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
134     $                   LLD_, MB_, M_, NB_, N_, RSRC_
135      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
136     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
137     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
138*     ..
139*     .. Local Scalars ..
140      INTEGER            HEIGHT, IACOL, IAROW, IBASE, ICOFFA, II, IIA,
141     $                   IIBEG, IIEND, IINXT, ILEFT, IRIGHT, IROFFA,
142     $                   ITOP, JJ, JJA, JJBEG, JJEND, JJNXT, LDA, MBA,
143     $                   MP, MPA, MYCOL, MYDIST, MYROW, NBA, NPCOL,
144     $                   NPROW, NQ, NQA, WIDE
145*     ..
146*     .. External Subroutines ..
147      EXTERNAL           BLACS_GRIDINFO, INFOG2L, ZLASET
148*     ..
149*     .. External Functions ..
150      LOGICAL            LSAME
151      INTEGER            ICEIL, NUMROC
152      EXTERNAL           ICEIL, LSAME, NUMROC
153*     ..
154*     .. Intrinsic Functions ..
155      INTRINSIC          MAX, MIN, MOD
156*     ..
157*     .. Executable Statements ..
158*
159      IF( M.EQ.0 .OR. N.EQ.0 )
160     $   RETURN
161*
162*     Get grid parameters
163*
164      CALL BLACS_GRIDINFO( DESCA( CTXT_ ), NPROW, NPCOL, MYROW, MYCOL )
165*
166      CALL INFOG2L( IA, JA, DESCA, NPROW, NPCOL, MYROW, MYCOL, IIA, JJA,
167     $              IAROW, IACOL )
168      MBA = DESCA( MB_ )
169      NBA = DESCA( NB_ )
170      LDA = DESCA( LLD_ )
171      IROFFA = MOD( IA-1, MBA )
172      ICOFFA = MOD( JA-1, NBA )
173*
174      IF( N.LE.( NBA-ICOFFA ) ) THEN
175*
176*        It is assumed that the local columns JJA:JJA+N-1 of the matrix
177*        A are in the same process column (IACOL).
178*
179*                         N
180*                JJA             JJA+N-1
181*         /      ---------------------    \
182*   IROFFA|      |                   |    |
183*         \      |...................|    |       ( IAROW )
184*           IIA  |x                  |    | MB_A
185*                | x                 |    |
186*                |--x----------------|    /
187*                |   x               |
188*                |    x              |        ITOP
189*                |     x             |          |
190*                |      x            |      /-------\
191*                |-------x-----------|      |-------x-----------|
192*                |        x          |      |        x          |
193*                |         x         |      |         x         |
194*                |          x        |      |          x        |
195*                |           x       |      |           x       |
196*                |------------x------|      |------------x------|
197*                |             x     |      \____________/
198*                |              x    |            |
199*                |               x   |          IBASE
200*                |                x  |
201*                |-----------------x-|          Local picture
202*                |                  x|
203*                |                   |
204*                |                   |
205*                |                   |
206*                |-------------------|
207*                |                   |
208*                .                   .
209*                .                   .
210*                .      (IACOL)      .
211*
212         IF( MYCOL.EQ.IACOL ) THEN
213*
214            MPA = NUMROC( M+IROFFA, MBA, MYROW, IAROW, NPROW )
215            IF( MPA.LE.0 )
216     $         RETURN
217            IF( MYROW.EQ.IAROW )
218     $         MPA = MPA - IROFFA
219            MYDIST = MOD( MYROW-IAROW+NPROW, NPROW )
220            ITOP = MYDIST * MBA - IROFFA
221*
222            IF( LSAME( UPLO, 'U' ) ) THEN
223*
224               ITOP = MAX( 0, ITOP )
225               IIBEG = IIA
226               IIEND = IIA + MPA - 1
227               IINXT = MIN( ICEIL( IIBEG, MBA ) * MBA, IIEND )
228*
229   10          CONTINUE
230               IF( ( N-ITOP ).GT.0 ) THEN
231                  CALL ZLASET( UPLO, IINXT-IIBEG+1, N-ITOP, ALPHA, BETA,
232     $                         A( IIBEG+(JJA+ITOP-1)*LDA ), LDA )
233                  MYDIST = MYDIST + NPROW
234                  ITOP = MYDIST * MBA - IROFFA
235                  IIBEG = IINXT +1
236                  IINXT = MIN( IINXT+MBA, IIEND )
237                  GO TO 10
238               END IF
239*
240            ELSE IF( LSAME( UPLO, 'L' ) ) THEN
241*
242               II = IIA
243               JJ = JJA
244               MP = MPA
245               IBASE = MIN( ITOP+MBA, N )
246               ITOP = MIN( MAX( 0, ITOP ), N )
247*
248   20          CONTINUE
249               IF( JJ.LE.( JJA+N-1 ) ) THEN
250                  HEIGHT = IBASE - ITOP
251                  CALL ZLASET( 'All', MP, ITOP-JJ+JJA, ALPHA, ALPHA,
252     $                         A( II+(JJ-1)*LDA ), LDA )
253                  CALL ZLASET( UPLO, MP, HEIGHT, ALPHA, BETA,
254     $                         A( II+(JJA+ITOP-1)*LDA ), LDA )
255                  MP = MAX( 0, MP - HEIGHT )
256                  II = II + HEIGHT
257                  JJ = JJA + IBASE
258                  MYDIST = MYDIST + NPROW
259                  ITOP = MYDIST * MBA - IROFFA
260                  IBASE = MIN( ITOP + MBA, N )
261                  ITOP = MIN( ITOP, N )
262                  GO TO 20
263               END IF
264*
265            ELSE
266*
267               II = IIA
268               JJ = JJA
269               MP = MPA
270               IBASE = MIN( ITOP+MBA, N )
271               ITOP = MIN( MAX( 0, ITOP ), N )
272*
273   30          CONTINUE
274               IF( JJ.LE.( JJA+N-1 ) ) THEN
275                  HEIGHT = IBASE - ITOP
276                  CALL ZLASET( 'All', MPA, ITOP-JJ+JJA, ALPHA, ALPHA,
277     $                         A( IIA+(JJ-1)*LDA ), LDA )
278                  CALL ZLASET( 'All', MPA-MP, HEIGHT, ALPHA, ALPHA,
279     $                         A( IIA+(JJA+ITOP-1)*LDA ), LDA )
280                  CALL ZLASET( 'All', MP, HEIGHT, ALPHA, BETA,
281     $                         A( II+(JJA+ITOP-1)*LDA ), LDA )
282                  MP = MAX( 0, MP - HEIGHT )
283                  II = II + HEIGHT
284                  JJ = JJA + IBASE
285                  MYDIST = MYDIST + NPROW
286                  ITOP = MYDIST * MBA - IROFFA
287                  IBASE = MIN( ITOP + MBA, N )
288                  ITOP = MIN( ITOP, N )
289                  GO TO 30
290               END IF
291*
292            END IF
293*
294         END IF
295*
296      ELSE IF( M.LE.( MBA-IROFFA ) ) THEN
297*
298*        It is assumed that the local rows IIA:IIA+M-1 of the matrix A
299*        are in the same process row (IAROW).
300*
301*            ICOFFA
302*             / \JJA
303*        IIA  ------------------ ....            --------
304*             | .x  |    |    |                 / |    | \
305*             | . x |    |    |            ILEFT| |    | |
306*             | .  x     |    |                 | |    | |
307*             | .   x    |    |                 \ x    | |
308*             | .   |x   |    |                   |x   | | IRIGHT
309*             | .   | x  |    |                   | x  | |
310*    (IAROW)  | .   |  x |    |                   |  x | |
311*             | .   |   x|    |                   |   x| |
312*             | .   |    x    |                   |    x /
313*             | .   |    |x   |                   |    |
314*             | .   |    | x  |                   |    |
315*             | .   |    |  x |                   |    |
316*             | .   |    |   x|                   |    |
317*    IIA+M-1  ------------------ ....            -------
318*              NB_A
319*             (IACOL)                          Local picture
320*
321         IF( MYROW.EQ.IAROW ) THEN
322*
323            NQA = NUMROC( N+ICOFFA, NBA, MYCOL, IACOL, NPCOL )
324            IF( NQA.LE.0 )
325     $         RETURN
326            IF( MYCOL.EQ.IACOL )
327     $         NQA = NQA - ICOFFA
328            MYDIST = MOD( MYCOL-IACOL+NPCOL, NPCOL )
329            ILEFT = MYDIST * NBA - ICOFFA
330*
331            IF( LSAME( UPLO, 'L' ) ) THEN
332*
333               ILEFT = MAX( 0, ILEFT )
334               JJBEG = JJA
335               JJEND = JJA + NQA - 1
336               JJNXT = MIN( ICEIL( JJBEG, NBA ) * NBA, JJEND )
337*
338   40          CONTINUE
339               IF( ( M-ILEFT ).GT.0 ) THEN
340                  CALL ZLASET( UPLO, M-ILEFT, JJNXT-JJBEG+1, ALPHA,
341     $                         BETA, A( IIA+ILEFT+(JJBEG-1)*LDA ), LDA )
342                  MYDIST = MYDIST + NPCOL
343                  ILEFT = MYDIST * NBA - ICOFFA
344                  JJBEG = JJNXT +1
345                  JJNXT = MIN( JJNXT+NBA, JJEND )
346                  GO TO 40
347               END IF
348*
349            ELSE IF( LSAME( UPLO, 'U' ) ) THEN
350*
351               II = IIA
352               JJ = JJA
353               NQ = NQA
354               IRIGHT = MIN( ILEFT+NBA, M )
355               ILEFT = MIN( MAX( 0, ILEFT ), M )
356*
357   50          CONTINUE
358               IF( II.LE.( IIA+M-1 ) ) THEN
359                  WIDE = IRIGHT - ILEFT
360                  CALL ZLASET( 'All', ILEFT-II+IIA, NQ, ALPHA, ALPHA,
361     $                         A( II+(JJ-1)*LDA ), LDA )
362                  CALL ZLASET( UPLO, WIDE, NQ, ALPHA, BETA,
363     $                         A( IIA+ILEFT+(JJ-1)*LDA ), LDA )
364                  NQ = MAX( 0, NQ - WIDE )
365                  II = IIA + IRIGHT
366                  JJ = JJ + WIDE
367                  MYDIST = MYDIST + NPCOL
368                  ILEFT = MYDIST * NBA - ICOFFA
369                  IRIGHT = MIN( ILEFT + NBA, M )
370                  ILEFT = MIN( ILEFT, M )
371                  GO TO 50
372               END IF
373*
374            ELSE
375*
376               II = IIA
377               JJ = JJA
378               NQ = NQA
379               IRIGHT = MIN( ILEFT+NBA, M )
380               ILEFT = MIN( MAX( 0, ILEFT ), M )
381*
382   60          CONTINUE
383               IF( II.LE.( IIA+M-1 ) ) THEN
384                  WIDE = IRIGHT - ILEFT
385                  CALL ZLASET( 'All', ILEFT-II+IIA, NQA, ALPHA, ALPHA,
386     $                         A( II+(JJA-1)*LDA ), LDA )
387                  CALL ZLASET( 'All', WIDE, NQA-NQ, ALPHA, ALPHA,
388     $                         A( IIA+ILEFT+(JJA-1)*LDA ), LDA )
389                  CALL ZLASET( 'All', WIDE, NQ, ALPHA, BETA,
390     $                         A( IIA+ILEFT+(JJ-1)*LDA ), LDA )
391                  NQ = MAX( 0, NQ - WIDE )
392                  II = IIA + IRIGHT
393                  JJ = JJ + WIDE
394                  MYDIST = MYDIST + NPCOL
395                  ILEFT = MYDIST * NBA - ICOFFA
396                  IRIGHT = MIN( ILEFT + NBA, M )
397                  ILEFT = MIN( ILEFT, M )
398                  GO TO 60
399               END IF
400*
401            END IF
402*
403         END IF
404*
405      END IF
406*
407      RETURN
408*
409*     End of PZLASE2
410*
411      END
412