1      SUBROUTINE SLARRE2( RANGE, N, VL, VU, IL, IU, D, E, E2,
2     $                    RTOL1, RTOL2, SPLTOL, NSPLIT, ISPLIT,
3     $                    M, DOL, DOU,
4     $                    W, WERR, WGAP, IBLOCK, INDEXW, GERS, PIVMIN,
5     $                    WORK, IWORK, INFO )
6*
7*  -- ScaLAPACK auxiliary routine (version 2.0) --
8*     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver
9*     July 4, 2010
10*
11*     .. Scalar Arguments ..
12      CHARACTER          RANGE
13      INTEGER            DOL, DOU, IL, INFO, IU, M, N, NSPLIT
14      REAL              PIVMIN, RTOL1, RTOL2, SPLTOL, VL, VU
15*     ..
16*     .. Array Arguments ..
17      INTEGER            IBLOCK( * ), ISPLIT( * ), IWORK( * ),
18     $                   INDEXW( * )
19      REAL               D( * ), E( * ), E2( * ), GERS( * ),
20     $                   W( * ),WERR( * ), WGAP( * ), WORK( * )
21*
22*  Purpose
23*  =======
24*
25*  To find the desired eigenvalues of a given real symmetric
26*  tridiagonal matrix T, SLARRE2 sets, via SLARRA,
27*  "small" off-diagonal elements to zero. For each block T_i, it finds
28*  (a) a suitable shift at one end of the block's spectrum,
29*  (b) the root RRR, T_i - sigma_i I = L_i D_i L_i^T, and
30*  (c) eigenvalues of each L_i D_i L_i^T.
31*  The representations and eigenvalues found are then returned to
32*  SSTEGR2 to compute the eigenvectors  T.
33*
34*  SLARRE2 is more suitable for parallel computation than the
35*  original LAPACK code for computing the root RRR and its eigenvalues.
36*  When computing eigenvalues in parallel and the input tridiagonal
37*  matrix splits into blocks, SLARRE2
38*  can skip over blocks which contain none of the eigenvalues from
39*  DOL to DOU for which the processor responsible. In extreme cases (such
40*  as large matrices consisting of many blocks of small size, e.g. 2x2,
41*  the gain can be substantial.
42*
43*  Arguments
44*  =========
45*
46*  RANGE   (input) CHARACTER
47*          = 'A': ("All")   all eigenvalues will be found.
48*          = 'V': ("Value") all eigenvalues in the half-open interval
49*                           (VL, VU] will be found.
50*          = 'I': ("Index") the IL-th through IU-th eigenvalues (of the
51*                           entire matrix) will be found.
52*
53*  N       (input) INTEGER
54*          The order of the matrix. N > 0.
55*
56*  VL      (input/output) REAL
57*  VU      (input/output) REAL
58*          If RANGE='V', the lower and upper bounds for the eigenvalues.
59*          Eigenvalues less than or equal to VL, or greater than VU,
60*          will not be returned.  VL < VU.
61*          If RANGE='I' or ='A', SLARRE2 computes bounds on the desired
62*          part of the spectrum.
63*
64*  IL      (input) INTEGER
65*  IU      (input) INTEGER
66*          If RANGE='I', the indices (in ascending order) of the
67*          smallest and largest eigenvalues to be returned.
68*          1 <= IL <= IU <= N.
69*
70*  D       (input/output) REAL             array, dimension (N)
71*          On entry, the N diagonal elements of the tridiagonal
72*          matrix T.
73*          On exit, the N diagonal elements of the diagonal
74*          matrices D_i.
75*
76*  E       (input/output) REAL             array, dimension (N)
77*          On entry, the first (N-1) entries contain the subdiagonal
78*          elements of the tridiagonal matrix T; E(N) need not be set.
79*          On exit, E contains the subdiagonal elements of the unit
80*          bidiagonal matrices L_i. The entries E( ISPLIT( I ) ),
81*          1 <= I <= NSPLIT, contain the base points sigma_i on output.
82*
83*  E2      (input/output) REAL             array, dimension (N)
84*          On entry, the first (N-1) entries contain the SQUARES of the
85*          subdiagonal elements of the tridiagonal matrix T;
86*          E2(N) need not be set.
87*          On exit, the entries E2( ISPLIT( I ) ),
88*          1 <= I <= NSPLIT, have been set to zero
89*
90*  RTOL1   (input) REAL
91*  RTOL2   (input) REAL
92*           Parameters for bisection.
93*           An interval [LEFT,RIGHT] has converged if
94*           RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
95*
96*  SPLTOL (input) REAL
97*          The threshold for splitting.
98*
99*  NSPLIT  (output) INTEGER
100*          The number of blocks T splits into. 1 <= NSPLIT <= N.
101*
102*  ISPLIT  (output) INTEGER array, dimension (N)
103*          The splitting points, at which T breaks up into blocks.
104*          The first block consists of rows/columns 1 to ISPLIT(1),
105*          the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),
106*          etc., and the NSPLIT-th consists of rows/columns
107*          ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.
108*
109*  M       (output) INTEGER
110*          The total number of eigenvalues (of all L_i D_i L_i^T)
111*          found.
112*
113*  DOL     (input) INTEGER
114*  DOU     (input) INTEGER
115*          If the user wants to work on only a selected part of the
116*          representation tree, he can specify an index range DOL:DOU.
117*          Otherwise, the setting DOL=1, DOU=N should be applied.
118*          Note that DOL and DOU refer to the order in which the eigenvalues
119*          are stored in W.
120*
121*  W       (output) REAL             array, dimension (N)
122*          The first M elements contain the eigenvalues. The
123*          eigenvalues of each of the blocks, L_i D_i L_i^T, are
124*          sorted in ascending order ( SLARRE2 may use the
125*          remaining N-M elements as workspace).
126*          Note that immediately after exiting this routine, only
127*          the eigenvalues from position DOL:DOU in W might be
128*          reliable on this processor
129*          when the eigenvalue computation is done in parallel.
130*
131*  WERR    (output) REAL             array, dimension (N)
132*          The error bound on the corresponding eigenvalue in W.
133*          Note that immediately after exiting this routine, only
134*          the uncertainties from position DOL:DOU in WERR might be
135*          reliable on this processor
136*          when the eigenvalue computation is done in parallel.
137*
138*  WGAP    (output) REAL             array, dimension (N)
139*          The separation from the right neighbor eigenvalue in W.
140*          The gap is only with respect to the eigenvalues of the same block
141*          as each block has its own representation tree.
142*          Exception: at the right end of a block we store the left gap
143*          Note that immediately after exiting this routine, only
144*          the gaps from position DOL:DOU in WGAP might be
145*          reliable on this processor
146*          when the eigenvalue computation is done in parallel.
147*
148*  IBLOCK  (output) INTEGER array, dimension (N)
149*          The indices of the blocks (submatrices) associated with the
150*          corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue
151*          W(i) belongs to the first block from the top, =2 if W(i)
152*          belongs to the second block, etc.
153*
154*  INDEXW  (output) INTEGER array, dimension (N)
155*          The indices of the eigenvalues within each block (submatrix);
156*          for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the
157*          i-th eigenvalue W(i) is the 10-th eigenvalue in block 2
158*
159*  GERS    (output) REAL             array, dimension (2*N)
160*          The N Gerschgorin intervals (the i-th Gerschgorin interval
161*          is (GERS(2*i-1), GERS(2*i)).
162*
163*  PIVMIN  (output) DOUBLE PRECISION
164*          The minimum pivot in the sturm sequence for T.
165*
166*  WORK    (workspace) REAL             array, dimension (6*N)
167*          Workspace.
168*
169*  IWORK   (workspace) INTEGER array, dimension (5*N)
170*          Workspace.
171*
172*  INFO    (output) INTEGER
173*          = 0:  successful exit
174*          > 0:  A problem occured in SLARRE2.
175*          < 0:  One of the called subroutines signaled an internal problem.
176*                Needs inspection of the corresponding parameter IINFO
177*                for further information.
178*
179*          =-1:  Problem in SLARRD.
180*          = 2:  No base representation could be found in MAXTRY iterations.
181*                Increasing MAXTRY and recompilation might be a remedy.
182*          =-3:  Problem in SLARRB when computing the refined root
183*                representation for SLASQ2.
184*          =-4:  Problem in SLARRB when preforming bisection on the
185*                desired part of the spectrum.
186*          =-5:  Problem in SLASQ2.
187*          =-6:  Problem in SLASQ2.
188*
189*  =====================================================================
190*
191*     .. Parameters ..
192      REAL               FAC, FOUR, FOURTH, FUDGE, HALF, HNDRD,
193     $                   MAXGROWTH, ONE, PERT, TWO, ZERO
194      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0,
195     $                     TWO = 2.0E0, FOUR=4.0E0,
196     $                     HNDRD = 100.0E0,
197     $                     PERT = 4.0E0,
198     $                     HALF = ONE/TWO, FOURTH = ONE/FOUR, FAC= HALF,
199     $                     MAXGROWTH = 64.0E0, FUDGE = 2.0E0 )
200      INTEGER            MAXTRY
201      PARAMETER          ( MAXTRY = 6 )
202*     ..
203*     .. Local Scalars ..
204      LOGICAL            FORCEB, NOREP, RNDPRT, USEDQD
205      INTEGER            CNT, CNT1, CNT2, I, IBEGIN, IDUM, IEND, IINFO,
206     $                   IN, INDL, INDU, IRANGE, J, JBLK, MB, MM,
207     $                   WBEGIN, WEND
208      REAL               AVGAP, BSRTOL, CLWDTH, DMAX, DPIVOT, EABS,
209     $                   EMAX, EOLD, EPS, GL, GU, ISLEFT, ISRGHT, RTL,
210     $                   RTOL, S1, S2, SAFMIN, SGNDEF, SIGMA, SPDIAM,
211     $                   TAU, TMP, TMP1
212
213
214*     ..
215*     .. Local Arrays ..
216      INTEGER            ISEED( 4 )
217*     ..
218*     .. External Functions ..
219      LOGICAL            LSAME
220      REAL                        SLAMCH
221      EXTERNAL           SLAMCH, LSAME
222
223*     ..
224*     .. External Subroutines ..
225      EXTERNAL           SCOPY, SLARNV, SLARRA, SLARRB, SLARRC,
226     $                   SLARRD, SLASQ2
227*     ..
228*     .. Intrinsic Functions ..
229      INTRINSIC          ABS, MAX, MIN
230
231*     ..
232*     .. Executable Statements ..
233*
234
235      INFO = 0
236
237*     Dis-/Enable a small random perturbation of the root representation
238      RNDPRT = .TRUE.
239*
240*     Decode RANGE
241*
242      IF( LSAME( RANGE, 'A' ) ) THEN
243         IRANGE = 1
244      ELSE IF( LSAME( RANGE, 'V' ) ) THEN
245         IRANGE = 2
246      ELSE IF( LSAME( RANGE, 'I' ) ) THEN
247         IRANGE = 3
248      END IF
249
250      M = 0
251
252*     Get machine constants
253      SAFMIN = SLAMCH( 'S' )
254      EPS = SLAMCH( 'P' )
255
256*     Set parameters
257      RTL = HNDRD*EPS
258      BSRTOL =  1.0E-1
259
260*     Treat case of 1x1 matrix for quick return
261      IF( N.EQ.1 ) THEN
262         IF( (IRANGE.EQ.1).OR.
263     $       ((IRANGE.EQ.2).AND.(D(1).GT.VL).AND.(D(1).LE.VU)).OR.
264     $       ((IRANGE.EQ.3).AND.(IL.EQ.1).AND.(IU.EQ.1)) ) THEN
265            M = 1
266            W(1) = D(1)
267*           The computation error of the eigenvalue is zero
268            WERR(1) = ZERO
269            WGAP(1) = ZERO
270            IBLOCK( 1 ) = 1
271            INDEXW( 1 ) = 1
272            GERS(1) = D( 1 )
273            GERS(2) = D( 1 )
274         ENDIF
275*        store the shift for the initial RRR, which is zero in this case
276         E(1) = ZERO
277         RETURN
278      END IF
279
280*     General case: tridiagonal matrix of order > 1
281*
282*     Init WERR, WGAP. Compute Gerschgorin intervals and spectral diameter.
283*     Compute maximum off-diagonal entry and pivmin.
284      GL = D(1)
285      GU = D(1)
286      EOLD = ZERO
287      EMAX = ZERO
288      E(N) = ZERO
289      DO 5 I = 1,N
290         WERR(I) = ZERO
291         WGAP(I) = ZERO
292         EABS = ABS( E(I) )
293         IF( EABS .GE. EMAX ) THEN
294            EMAX = EABS
295         END IF
296         TMP1 = EABS + EOLD
297         GERS( 2*I-1) = D(I) - TMP1
298         GL =  MIN( GL, GERS( 2*I - 1))
299         GERS( 2*I ) = D(I) + TMP1
300         GU = MAX( GU, GERS(2*I) )
301         EOLD  = EABS
302 5    CONTINUE
303*     The minimum pivot allowed in the sturm sequence for T
304      PIVMIN = SAFMIN * MAX( ONE, EMAX**2 )
305*     Compute spectral diameter. The Gerschgorin bounds give an
306*     estimate that is wrong by at most a factor of SQRT(2)
307      SPDIAM = GU - GL
308
309*     Compute splitting points
310      CALL SLARRA( N, D, E, E2, SPLTOL, SPDIAM,
311     $                    NSPLIT, ISPLIT, IINFO )
312
313*     Can force use of bisection instead of faster DQDS
314      FORCEB = .FALSE.
315
316      IF( (IRANGE.EQ.1) .AND. (.NOT. FORCEB) ) THEN
317*        Set interval [VL,VU] that contains all eigenvalues
318         VL = GL
319         VU = GU
320      ELSE
321*        We call SLARRD to find crude approximations to the eigenvalues
322*        in the desired range. In case IRANGE = 3, we also obtain the
323*        interval (VL,VU] that contains all the wanted eigenvalues.
324*        An interval [LEFT,RIGHT] has converged if
325*        RIGHT-LEFT.LT.RTOL*MAX(ABS(LEFT),ABS(RIGHT))
326*        SLARRD needs a WORK of size 4*N, IWORK of size 3*N
327         CALL SLARRD( RANGE, 'B', N, VL, VU, IL, IU, GERS,
328     $                    BSRTOL, D, E, E2, PIVMIN, NSPLIT, ISPLIT,
329     $                    MM, W, WERR, VL, VU, IBLOCK, INDEXW,
330     $                    WORK, IWORK, IINFO )
331         IF( IINFO.NE.0 ) THEN
332            INFO = -1
333            RETURN
334         ENDIF
335*        Make sure that the entries M+1 to N in W, WERR, IBLOCK, INDEXW are 0
336         DO 14 I = MM+1,N
337            W( I ) = ZERO
338            WERR( I ) = ZERO
339            IBLOCK( I ) = 0
340            INDEXW( I ) = 0
341 14      CONTINUE
342      END IF
343
344
345***
346*     Loop over unreduced blocks
347      IBEGIN = 1
348      WBEGIN = 1
349      DO 170 JBLK = 1, NSPLIT
350         IEND = ISPLIT( JBLK )
351         IN = IEND - IBEGIN + 1
352
353*        1 X 1 block
354         IF( IN.EQ.1 ) THEN
355            IF( (IRANGE.EQ.1).OR.( (IRANGE.EQ.2).AND.
356     $         ( D( IBEGIN ).GT.VL ).AND.( D( IBEGIN ).LE.VU ) )
357     $        .OR. ( (IRANGE.EQ.3).AND.(IBLOCK(WBEGIN).EQ.JBLK))
358     $        ) THEN
359               M = M + 1
360               W( M ) = D( IBEGIN )
361               WERR(M) = ZERO
362*              The gap for a single block doesn't matter for the later
363*              algorithm and is assigned an arbitrary large value
364               WGAP(M) = ZERO
365               IBLOCK( M ) = JBLK
366               INDEXW( M ) = 1
367               WBEGIN = WBEGIN + 1
368            ENDIF
369*           E( IEND ) holds the shift for the initial RRR
370            E( IEND ) = ZERO
371            IBEGIN = IEND + 1
372            GO TO 170
373         END IF
374*
375*        Blocks of size larger than 1x1
376*
377*        E( IEND ) will hold the shift for the initial RRR, for now set it =0
378         E( IEND ) = ZERO
379*
380*        Find local outer bounds GL,GU for the block
381         GL = D(IBEGIN)
382         GU = D(IBEGIN)
383         DO 15 I = IBEGIN , IEND
384            GL = MIN( GERS( 2*I-1 ), GL )
385            GU = MAX( GERS( 2*I ), GU )
386 15      CONTINUE
387         SPDIAM = GU - GL
388
389         IF(.NOT. ((IRANGE.EQ.1).AND.(.NOT.FORCEB)) ) THEN
390*           Count the number of eigenvalues in the current block.
391            MB = 0
392            DO 20 I = WBEGIN,MM
393               IF( IBLOCK(I).EQ.JBLK ) THEN
394                  MB = MB+1
395               ELSE
396                  GOTO 21
397               ENDIF
398 20         CONTINUE
399 21         CONTINUE
400
401            IF( MB.EQ.0) THEN
402*              No eigenvalue in the current block lies in the desired range
403*              E( IEND ) holds the shift for the initial RRR
404               E( IEND ) = ZERO
405               IBEGIN = IEND + 1
406               GO TO 170
407            ELSE
408
409*              Decide whether dqds or bisection is more efficient
410               USEDQD = ( (MB .GT. FAC*IN) .AND. (.NOT.FORCEB) )
411               WEND = WBEGIN + MB - 1
412*              Calculate gaps for the current block
413*              In later stages, when representations for individual
414*              eigenvalues are different, we use SIGMA = E( IEND ).
415               SIGMA = ZERO
416               DO 30 I = WBEGIN, WEND - 1
417                  WGAP( I ) = MAX( ZERO,
418     $                        W(I+1)-WERR(I+1) - (W(I)+WERR(I)) )
419 30            CONTINUE
420               WGAP( WEND ) = MAX( ZERO,
421     $                     VU - SIGMA - (W( WEND )+WERR( WEND )))
422*              Find local index of the first and last desired evalue.
423               INDL = INDEXW(WBEGIN)
424               INDU = INDEXW( WEND )
425            ENDIF
426         ELSE
427*           MB =  number of eigenvalues to compute
428            MB = IN
429            WEND = WBEGIN + MB - 1
430            INDL = 1
431            INDU = IN
432	 ENDIF
433
434         IF( (WEND.LT.DOL).OR.(WBEGIN.GT.DOU) ) THEN
435*           if this subblock contains no desired eigenvalues,
436*           skip the computation of this representation tree
437            IBEGIN = IEND + 1
438            WBEGIN = WEND + 1
439            M = M + INDU - INDL + 1
440            GO TO 170
441         END IF
442
443*        Find approximations to the extremal eigenvalues of the block
444         CALL SLARRK( IN, 1, GL, GU, D(IBEGIN),
445     $               E2(IBEGIN), PIVMIN, RTL, TMP, TMP1, IINFO )
446         IF( IINFO.NE.0 ) THEN
447            INFO = -1
448            RETURN
449         ENDIF
450         ISLEFT = MAX(GL, TMP - TMP1
451     $            - HNDRD * EPS* ABS(TMP - TMP1))
452         CALL SLARRK( IN, IN, GL, GU, D(IBEGIN),
453     $               E2(IBEGIN), PIVMIN, RTL, TMP, TMP1, IINFO )
454         IF( IINFO.NE.0 ) THEN
455            INFO = -1
456            RETURN
457         ENDIF
458         ISRGHT = MIN(GU, TMP + TMP1
459     $                 + HNDRD * EPS * ABS(TMP + TMP1))
460         IF(( (IRANGE.EQ.1) .AND. (.NOT. FORCEB) ).OR.USEDQD) THEN
461*           Case of DQDS
462*           Improve the estimate of the spectral diameter
463            SPDIAM = ISRGHT - ISLEFT
464         ELSE
465*           Case of bisection
466*           Find approximations to the wanted extremal eigenvalues
467            ISLEFT = MAX(GL, W(WBEGIN) - WERR(WBEGIN)
468     $                  - HNDRD * EPS*ABS(W(WBEGIN)- WERR(WBEGIN) ))
469            ISRGHT = MIN(GU,W(WEND) + WERR(WEND)
470     $                  + HNDRD * EPS * ABS(W(WEND)+ WERR(WEND)))
471	 ENDIF
472
473
474*        Decide whether the base representation for the current block
475*        L_JBLK D_JBLK L_JBLK^T = T_JBLK - sigma_JBLK I
476*        should be on the left or the right end of the current block.
477*        The strategy is to shift to the end which is "more populated"
478*        Furthermore, decide whether to use DQDS for the computation of
479*        the eigenvalue approximations at the end of SLARRE2 or bisection.
480*        dqds is chosen if all eigenvalues are desired or the number of
481*        eigenvalues to be computed is large compared to the blocksize.
482         IF( ( IRANGE.EQ.1 ) .AND. (.NOT.FORCEB) ) THEN
483*           If all the eigenvalues have to be computed, we use dqd
484            USEDQD = .TRUE.
485*           INDL is the local index of the first eigenvalue to compute
486            INDL = 1
487            INDU = IN
488*           MB =  number of eigenvalues to compute
489            MB = IN
490            WEND = WBEGIN + MB - 1
491*           Define 1/4 and 3/4 points of the spectrum
492            S1 = ISLEFT + FOURTH * SPDIAM
493	    S2 = ISRGHT - FOURTH * SPDIAM
494         ELSE
495*           SLARRD has computed IBLOCK and INDEXW for each eigenvalue
496*           approximation.
497*           choose sigma
498            IF( USEDQD ) THEN
499               S1 = ISLEFT + FOURTH * SPDIAM
500	       S2 = ISRGHT - FOURTH * SPDIAM
501            ELSE
502               TMP = MIN(ISRGHT,VU) -  MAX(ISLEFT,VL)
503               S1 =  MAX(ISLEFT,VL) + FOURTH * TMP
504               S2 =  MIN(ISRGHT,VU) - FOURTH * TMP
505            ENDIF
506         ENDIF
507
508*        Compute the negcount at the 1/4 and 3/4 points
509         IF(MB.GT.1) THEN
510	    CALL SLARRC( 'T', IN, S1, S2, D(IBEGIN),
511     $                    E(IBEGIN), PIVMIN, CNT, CNT1, CNT2, IINFO)
512         ENDIF
513
514	 IF(MB.EQ.1) THEN
515            SIGMA = GL
516            SGNDEF = ONE
517         ELSEIF( CNT1 - INDL .GE. INDU - CNT2 ) THEN
518            IF( ( IRANGE.EQ.1 ) .AND. (.NOT.FORCEB) ) THEN
519               SIGMA = MAX(ISLEFT,GL)
520            ELSEIF( USEDQD ) THEN
521*              use Gerschgorin bound as shift to get pos def matrix
522*              for dqds
523               SIGMA = ISLEFT
524            ELSE
525*              use approximation of the first desired eigenvalue of the
526*              block as shift
527               SIGMA = MAX(ISLEFT,VL)
528            ENDIF
529            SGNDEF = ONE
530         ELSE
531            IF( ( IRANGE.EQ.1 ) .AND. (.NOT.FORCEB) ) THEN
532               SIGMA = MIN(ISRGHT,GU)
533            ELSEIF( USEDQD ) THEN
534*              use Gerschgorin bound as shift to get neg def matrix
535*              for dqds
536               SIGMA = ISRGHT
537            ELSE
538*              use approximation of the first desired eigenvalue of the
539*              block as shift
540               SIGMA = MIN(ISRGHT,VU)
541            ENDIF
542            SGNDEF = -ONE
543         ENDIF
544
545
546*        An initial SIGMA has been chosen that will be used for computing
547*        T - SIGMA I = L D L^T
548*        Define the increment TAU of the shift in case the initial shift
549*        needs to be refined to obtain a factorization with not too much
550*        element growth.
551         IF( USEDQD ) THEN
552            TAU = SPDIAM*EPS*N + TWO*PIVMIN
553            TAU = MAX(TAU,EPS*ABS(SIGMA))
554         ELSE
555            IF(MB.GT.1) THEN
556               CLWDTH = W(WEND) + WERR(WEND) - W(WBEGIN) - WERR(WBEGIN)
557               AVGAP = ABS(CLWDTH / REAL(WEND-WBEGIN))
558               IF( SGNDEF.EQ.ONE ) THEN
559                  TAU = HALF*MAX(WGAP(WBEGIN),AVGAP)
560                  TAU = MAX(TAU,WERR(WBEGIN))
561               ELSE
562                  TAU = HALF*MAX(WGAP(WEND-1),AVGAP)
563                  TAU = MAX(TAU,WERR(WEND))
564               ENDIF
565	    ELSE
566               TAU = WERR(WBEGIN)
567	    ENDIF
568         ENDIF
569*
570         DO 80 IDUM = 1, MAXTRY
571*           Compute L D L^T factorization of tridiagonal matrix T - sigma I.
572*           Store D in WORK(1:IN), L in WORK(IN+1:2*IN), and reciprocals of
573*           pivots in WORK(2*IN+1:3*IN)
574            DPIVOT = D( IBEGIN ) - SIGMA
575            WORK( 1 ) = DPIVOT
576            DMAX = ABS( WORK(1) )
577            J = IBEGIN
578            DO 70 I = 1, IN - 1
579               WORK( 2*IN+I ) = ONE / WORK( I )
580               TMP = E( J )*WORK( 2*IN+I )
581               WORK( IN+I ) = TMP
582               DPIVOT = ( D( J+1 )-SIGMA ) - TMP*E( J )
583               WORK( I+1 ) = DPIVOT
584               DMAX = MAX( DMAX, ABS(DPIVOT) )
585               J = J + 1
586 70         CONTINUE
587*           check for element growth
588            IF( DMAX .GT. MAXGROWTH*SPDIAM ) THEN
589               NOREP = .TRUE.
590	    ELSE
591               NOREP = .FALSE.
592            ENDIF
593	    IF(NOREP) THEN
594*              Note that in the case of IRANGE=1, we use the Gerschgorin
595*              shift which makes the matrix definite. So we should end up
596*              here really only in the case of IRANGE = 2,3
597               IF( IDUM.EQ.MAXTRY-1 ) THEN
598                  IF( SGNDEF.EQ.ONE ) THEN
599*                    The fudged Gerschgorin shift should succeed
600                     SIGMA =
601     $                    GL - FUDGE*SPDIAM*EPS*N - FUDGE*TWO*PIVMIN
602                  ELSE
603                     SIGMA =
604     $                    GU + FUDGE*SPDIAM*EPS*N + FUDGE*TWO*PIVMIN
605                  END IF
606               ELSE
607                  SIGMA = SIGMA - SGNDEF * TAU
608                  TAU = TWO * TAU
609               END IF
610            ELSE
611*              an initial RRR is found
612               GO TO 83
613            END IF
614 80      CONTINUE
615*        if the program reaches this point, no base representation could be
616*        found in MAXTRY iterations.
617         INFO = 2
618         RETURN
619
620 83      CONTINUE
621*        At this point, we have found an initial base representation
622*        T - SIGMA I = L D L^T with not too much element growth.
623*        Store the shift.
624         E( IEND ) = SIGMA
625*        Store D and L.
626         CALL SCOPY( IN, WORK, 1, D( IBEGIN ), 1 )
627         CALL SCOPY( IN-1, WORK( IN+1 ), 1, E( IBEGIN ), 1 )
628
629
630         IF(RNDPRT .AND. MB.GT.1 ) THEN
631*
632*           Perturb each entry of the base representation by a small
633*           (but random) relative amount to overcome difficulties with
634*           glued matrices.
635*
636            DO 122 I = 1, 4
637               ISEED( I ) = 1
638 122        CONTINUE
639
640            CALL SLARNV(2, ISEED, 2*IN-1, WORK(1))
641            DO 125 I = 1,IN-1
642               D(IBEGIN+I-1) = D(IBEGIN+I-1)*(ONE+EPS*PERT*WORK(I))
643               E(IBEGIN+I-1) = E(IBEGIN+I-1)*(ONE+EPS*PERT*WORK(IN+I))
644 125        CONTINUE
645            D(IEND) = D(IEND)*(ONE+EPS*FOUR*WORK(IN))
646*
647         ENDIF
648*
649*        Don't update the Gerschgorin intervals because keeping track
650*        of the updates would be too much work in SLARRV.
651*        We update W instead and use it to locate the proper Gerschgorin
652*        intervals.
653
654*        Compute the required eigenvalues of L D L' by bisection or dqds
655         IF ( .NOT.USEDQD ) THEN
656*           If SLARRD has been used, shift the eigenvalue approximations
657*           according to their representation. This is necessary for
658*           a uniform SLARRV since dqds computes eigenvalues of the
659*           shifted representation. In SLARRV, W will always hold the
660*           UNshifted eigenvalue approximation.
661            DO 134 J=WBEGIN,WEND
662               W(J) = W(J) - SIGMA
663               WERR(J) = WERR(J) + ABS(W(J)) * EPS
664 134        CONTINUE
665*           call SLARRB to reduce eigenvalue error of the approximations
666*           from SLARRD
667            DO 135 I = IBEGIN, IEND-1
668               WORK( I ) = D( I ) * E( I )**2
669 135        CONTINUE
670*           use bisection to find EV from INDL to INDU
671            CALL SLARRB(IN, D(IBEGIN), WORK(IBEGIN),
672     $                  INDL, INDU, RTOL1, RTOL2, INDL-1,
673     $                  W(WBEGIN), WGAP(WBEGIN), WERR(WBEGIN),
674     $                  WORK( 2*N+1 ), IWORK, PIVMIN, SPDIAM,
675     $                  IN, IINFO )
676            IF( IINFO .NE. 0 ) THEN
677               INFO = -4
678               RETURN
679            END IF
680*           SLARRB computes all gaps correctly except for the last one
681*           Record distance to VU/GU
682            WGAP( WEND ) = MAX( ZERO,
683     $           ( VU-SIGMA ) - ( W( WEND ) + WERR( WEND ) ) )
684            DO 138 I = INDL, INDU
685               M = M + 1
686               IBLOCK(M) = JBLK
687               INDEXW(M) = I
688 138        CONTINUE
689         ELSE
690*           Call dqds to get all eigs (and then possibly delete unwanted
691*           eigenvalues).
692*           Note that dqds finds the eigenvalues of the L D L^T representation
693*           of T to high relative accuracy. High relative accuracy
694*           might be lost when the shift of the RRR is subtracted to obtain
695*           the eigenvalues of T. However, T is not guaranteed to define its
696*           eigenvalues to high relative accuracy anyway.
697*           Set RTOL to the order of the tolerance used in SLASQ2
698*           This is an ESTIMATED error, the worst case bound is 4*N*EPS
699*           which is usually too large and requires unnecessary work to be
700*           done by bisection when computing the eigenvectors
701            RTOL = LOG(REAL(IN)) * FOUR * EPS
702            J = IBEGIN
703            DO 140 I = 1, IN - 1
704               WORK( 2*I-1 ) = ABS( D( J ) )
705               WORK( 2*I ) = E( J )*E( J )*WORK( 2*I-1 )
706               J = J + 1
707  140       CONTINUE
708            WORK( 2*IN-1 ) = ABS( D( IEND ) )
709            WORK( 2*IN ) = ZERO
710            CALL SLASQ2( IN, WORK, IINFO )
711            IF( IINFO .NE. 0 ) THEN
712*              If IINFO = -5 then an index is part of a tight cluster
713*              and should be changed. The index is in IWORK(1) and the
714*              gap is in WORK(N+1)
715               INFO = -5
716               RETURN
717            ELSE
718*              Test that all eigenvalues are positive as expected
719               DO 149 I = 1, IN
720	          IF( WORK( I ).LT.ZERO ) THEN
721                     INFO = -6
722                     RETURN
723                  ENDIF
724 149           CONTINUE
725            END IF
726            IF( SGNDEF.GT.ZERO ) THEN
727               DO 150 I = INDL, INDU
728                  M = M + 1
729                  W( M ) = WORK( IN-I+1 )
730                  IBLOCK( M ) = JBLK
731                  INDEXW( M ) = I
732 150           CONTINUE
733            ELSE
734               DO 160 I = INDL, INDU
735                  M = M + 1
736                  W( M ) = -WORK( I )
737                  IBLOCK( M ) = JBLK
738                  INDEXW( M ) = I
739 160           CONTINUE
740            END IF
741
742            DO 165 I = M - MB + 1, M
743*              the value of RTOL below should be the tolerance in SLASQ2
744               WERR( I ) = RTOL * ABS( W(I) )
745 165        CONTINUE
746            DO 166 I = M - MB + 1, M - 1
747*              compute the right gap between the intervals
748               WGAP( I ) = MAX( ZERO,
749     $                          W(I+1)-WERR(I+1) - (W(I)+WERR(I)) )
750 166        CONTINUE
751            WGAP( M ) = MAX( ZERO,
752     $           ( VU-SIGMA ) - ( W( M ) + WERR( M ) ) )
753         END IF
754*        proceed with next block
755         IBEGIN = IEND + 1
756         WBEGIN = WEND + 1
757 170  CONTINUE
758*
759
760      RETURN
761*
762*     end of SLARRE2
763*
764      END
765