1 /**********************************************************************
2 * Copyright (c) 2013, 2014 Pieter Wuille *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
5 **********************************************************************/
6
7 #ifndef SECP256K1_FIELD_REPR_IMPL_H
8 #define SECP256K1_FIELD_REPR_IMPL_H
9
10 #if defined HAVE_CONFIG_H
11 #include "libsecp256k1-config.h"
12 #endif
13
14 #include "util.h"
15 #include "field.h"
16
17 #if defined(USE_ASM_X86_64)
18 #include "field_5x52_asm_impl.h"
19 #else
20 #include "field_5x52_int128_impl.h"
21 #endif
22
23 /** Implements arithmetic modulo FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F,
24 * represented as 5 uint64_t's in base 2^52. The values are allowed to contain >52 each. In particular,
25 * each FieldElem has a 'magnitude' associated with it. Internally, a magnitude M means each element
26 * is at most M*(2^53-1), except the most significant one, which is limited to M*(2^49-1). All operations
27 * accept any input with magnitude at most M, and have different rules for propagating magnitude to their
28 * output.
29 */
30
31 #ifdef VERIFY
secp256k1_fe_verify(const secp256k1_fe * a)32 static void secp256k1_fe_verify(const secp256k1_fe *a) {
33 const uint64_t *d = a->n;
34 int m = a->normalized ? 1 : 2 * a->magnitude, r = 1;
35 /* secp256k1 'p' value defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
36 r &= (d[0] <= 0xFFFFFFFFFFFFFULL * m);
37 r &= (d[1] <= 0xFFFFFFFFFFFFFULL * m);
38 r &= (d[2] <= 0xFFFFFFFFFFFFFULL * m);
39 r &= (d[3] <= 0xFFFFFFFFFFFFFULL * m);
40 r &= (d[4] <= 0x0FFFFFFFFFFFFULL * m);
41 r &= (a->magnitude >= 0);
42 r &= (a->magnitude <= 2048);
43 if (a->normalized) {
44 r &= (a->magnitude <= 1);
45 if (r && (d[4] == 0x0FFFFFFFFFFFFULL) && ((d[3] & d[2] & d[1]) == 0xFFFFFFFFFFFFFULL)) {
46 r &= (d[0] < 0xFFFFEFFFFFC2FULL);
47 }
48 }
49 VERIFY_CHECK(r == 1);
50 }
51 #endif
52
secp256k1_fe_normalize(secp256k1_fe * r)53 static void secp256k1_fe_normalize(secp256k1_fe *r) {
54 uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
55
56 /* Reduce t4 at the start so there will be at most a single carry from the first pass */
57 uint64_t m;
58 uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
59
60 /* The first pass ensures the magnitude is 1, ... */
61 t0 += x * 0x1000003D1ULL;
62 t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
63 t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; m = t1;
64 t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; m &= t2;
65 t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; m &= t3;
66
67 /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
68 VERIFY_CHECK(t4 >> 49 == 0);
69
70 /* At most a single final reduction is needed; check if the value is >= the field characteristic */
71 x = (t4 >> 48) | ((t4 == 0x0FFFFFFFFFFFFULL) & (m == 0xFFFFFFFFFFFFFULL)
72 & (t0 >= 0xFFFFEFFFFFC2FULL));
73
74 /* Apply the final reduction (for constant-time behaviour, we do it always) */
75 t0 += x * 0x1000003D1ULL;
76 t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
77 t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
78 t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
79 t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
80
81 /* If t4 didn't carry to bit 48 already, then it should have after any final reduction */
82 VERIFY_CHECK(t4 >> 48 == x);
83
84 /* Mask off the possible multiple of 2^256 from the final reduction */
85 t4 &= 0x0FFFFFFFFFFFFULL;
86
87 r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
88
89 #ifdef VERIFY
90 r->magnitude = 1;
91 r->normalized = 1;
92 secp256k1_fe_verify(r);
93 #endif
94 }
95
secp256k1_fe_normalize_weak(secp256k1_fe * r)96 static void secp256k1_fe_normalize_weak(secp256k1_fe *r) {
97 uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
98
99 /* Reduce t4 at the start so there will be at most a single carry from the first pass */
100 uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
101
102 /* The first pass ensures the magnitude is 1, ... */
103 t0 += x * 0x1000003D1ULL;
104 t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
105 t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
106 t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
107 t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
108
109 /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
110 VERIFY_CHECK(t4 >> 49 == 0);
111
112 r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
113
114 #ifdef VERIFY
115 r->magnitude = 1;
116 secp256k1_fe_verify(r);
117 #endif
118 }
119
secp256k1_fe_normalize_var(secp256k1_fe * r)120 static void secp256k1_fe_normalize_var(secp256k1_fe *r) {
121 uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
122
123 /* Reduce t4 at the start so there will be at most a single carry from the first pass */
124 uint64_t m;
125 uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
126
127 /* The first pass ensures the magnitude is 1, ... */
128 t0 += x * 0x1000003D1ULL;
129 t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
130 t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; m = t1;
131 t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; m &= t2;
132 t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; m &= t3;
133
134 /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
135 VERIFY_CHECK(t4 >> 49 == 0);
136
137 /* At most a single final reduction is needed; check if the value is >= the field characteristic */
138 x = (t4 >> 48) | ((t4 == 0x0FFFFFFFFFFFFULL) & (m == 0xFFFFFFFFFFFFFULL)
139 & (t0 >= 0xFFFFEFFFFFC2FULL));
140
141 if (x) {
142 t0 += 0x1000003D1ULL;
143 t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
144 t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
145 t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
146 t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
147
148 /* If t4 didn't carry to bit 48 already, then it should have after any final reduction */
149 VERIFY_CHECK(t4 >> 48 == x);
150
151 /* Mask off the possible multiple of 2^256 from the final reduction */
152 t4 &= 0x0FFFFFFFFFFFFULL;
153 }
154
155 r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
156
157 #ifdef VERIFY
158 r->magnitude = 1;
159 r->normalized = 1;
160 secp256k1_fe_verify(r);
161 #endif
162 }
163
secp256k1_fe_normalizes_to_zero(secp256k1_fe * r)164 static int secp256k1_fe_normalizes_to_zero(secp256k1_fe *r) {
165 uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
166
167 /* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */
168 uint64_t z0, z1;
169
170 /* Reduce t4 at the start so there will be at most a single carry from the first pass */
171 uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
172
173 /* The first pass ensures the magnitude is 1, ... */
174 t0 += x * 0x1000003D1ULL;
175 t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL; z0 = t0; z1 = t0 ^ 0x1000003D0ULL;
176 t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; z0 |= t1; z1 &= t1;
177 t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; z0 |= t2; z1 &= t2;
178 t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; z0 |= t3; z1 &= t3;
179 z0 |= t4; z1 &= t4 ^ 0xF000000000000ULL;
180
181 /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
182 VERIFY_CHECK(t4 >> 49 == 0);
183
184 return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL);
185 }
186
secp256k1_fe_normalizes_to_zero_var(secp256k1_fe * r)187 static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe *r) {
188 uint64_t t0, t1, t2, t3, t4;
189 uint64_t z0, z1;
190 uint64_t x;
191
192 t0 = r->n[0];
193 t4 = r->n[4];
194
195 /* Reduce t4 at the start so there will be at most a single carry from the first pass */
196 x = t4 >> 48;
197
198 /* The first pass ensures the magnitude is 1, ... */
199 t0 += x * 0x1000003D1ULL;
200
201 /* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */
202 z0 = t0 & 0xFFFFFFFFFFFFFULL;
203 z1 = z0 ^ 0x1000003D0ULL;
204
205 /* Fast return path should catch the majority of cases */
206 if ((z0 != 0ULL) & (z1 != 0xFFFFFFFFFFFFFULL)) {
207 return 0;
208 }
209
210 t1 = r->n[1];
211 t2 = r->n[2];
212 t3 = r->n[3];
213
214 t4 &= 0x0FFFFFFFFFFFFULL;
215
216 t1 += (t0 >> 52);
217 t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; z0 |= t1; z1 &= t1;
218 t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; z0 |= t2; z1 &= t2;
219 t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; z0 |= t3; z1 &= t3;
220 z0 |= t4; z1 &= t4 ^ 0xF000000000000ULL;
221
222 /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
223 VERIFY_CHECK(t4 >> 49 == 0);
224
225 return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL);
226 }
227
secp256k1_fe_set_int(secp256k1_fe * r,int a)228 SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe *r, int a) {
229 r->n[0] = a;
230 r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0;
231 #ifdef VERIFY
232 r->magnitude = 1;
233 r->normalized = 1;
234 secp256k1_fe_verify(r);
235 #endif
236 }
237
secp256k1_fe_is_zero(const secp256k1_fe * a)238 SECP256K1_INLINE static int secp256k1_fe_is_zero(const secp256k1_fe *a) {
239 const uint64_t *t = a->n;
240 #ifdef VERIFY
241 VERIFY_CHECK(a->normalized);
242 secp256k1_fe_verify(a);
243 #endif
244 return (t[0] | t[1] | t[2] | t[3] | t[4]) == 0;
245 }
246
secp256k1_fe_is_odd(const secp256k1_fe * a)247 SECP256K1_INLINE static int secp256k1_fe_is_odd(const secp256k1_fe *a) {
248 #ifdef VERIFY
249 VERIFY_CHECK(a->normalized);
250 secp256k1_fe_verify(a);
251 #endif
252 return a->n[0] & 1;
253 }
254
secp256k1_fe_clear(secp256k1_fe * a)255 SECP256K1_INLINE static void secp256k1_fe_clear(secp256k1_fe *a) {
256 int i;
257 #ifdef VERIFY
258 a->magnitude = 0;
259 a->normalized = 1;
260 #endif
261 for (i=0; i<5; i++) {
262 a->n[i] = 0;
263 }
264 }
265
secp256k1_fe_cmp_var(const secp256k1_fe * a,const secp256k1_fe * b)266 static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b) {
267 int i;
268 #ifdef VERIFY
269 VERIFY_CHECK(a->normalized);
270 VERIFY_CHECK(b->normalized);
271 secp256k1_fe_verify(a);
272 secp256k1_fe_verify(b);
273 #endif
274 for (i = 4; i >= 0; i--) {
275 if (a->n[i] > b->n[i]) {
276 return 1;
277 }
278 if (a->n[i] < b->n[i]) {
279 return -1;
280 }
281 }
282 return 0;
283 }
284
secp256k1_fe_set_b32(secp256k1_fe * r,const unsigned char * a)285 static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a) {
286 r->n[0] = (uint64_t)a[31]
287 | ((uint64_t)a[30] << 8)
288 | ((uint64_t)a[29] << 16)
289 | ((uint64_t)a[28] << 24)
290 | ((uint64_t)a[27] << 32)
291 | ((uint64_t)a[26] << 40)
292 | ((uint64_t)(a[25] & 0xF) << 48);
293 r->n[1] = (uint64_t)((a[25] >> 4) & 0xF)
294 | ((uint64_t)a[24] << 4)
295 | ((uint64_t)a[23] << 12)
296 | ((uint64_t)a[22] << 20)
297 | ((uint64_t)a[21] << 28)
298 | ((uint64_t)a[20] << 36)
299 | ((uint64_t)a[19] << 44);
300 r->n[2] = (uint64_t)a[18]
301 | ((uint64_t)a[17] << 8)
302 | ((uint64_t)a[16] << 16)
303 | ((uint64_t)a[15] << 24)
304 | ((uint64_t)a[14] << 32)
305 | ((uint64_t)a[13] << 40)
306 | ((uint64_t)(a[12] & 0xF) << 48);
307 r->n[3] = (uint64_t)((a[12] >> 4) & 0xF)
308 | ((uint64_t)a[11] << 4)
309 | ((uint64_t)a[10] << 12)
310 | ((uint64_t)a[9] << 20)
311 | ((uint64_t)a[8] << 28)
312 | ((uint64_t)a[7] << 36)
313 | ((uint64_t)a[6] << 44);
314 r->n[4] = (uint64_t)a[5]
315 | ((uint64_t)a[4] << 8)
316 | ((uint64_t)a[3] << 16)
317 | ((uint64_t)a[2] << 24)
318 | ((uint64_t)a[1] << 32)
319 | ((uint64_t)a[0] << 40);
320 if (r->n[4] == 0x0FFFFFFFFFFFFULL && (r->n[3] & r->n[2] & r->n[1]) == 0xFFFFFFFFFFFFFULL && r->n[0] >= 0xFFFFEFFFFFC2FULL) {
321 return 0;
322 }
323 #ifdef VERIFY
324 r->magnitude = 1;
325 r->normalized = 1;
326 secp256k1_fe_verify(r);
327 #endif
328 return 1;
329 }
330
331 /** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */
secp256k1_fe_get_b32(unsigned char * r,const secp256k1_fe * a)332 static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a) {
333 #ifdef VERIFY
334 VERIFY_CHECK(a->normalized);
335 secp256k1_fe_verify(a);
336 #endif
337 r[0] = (a->n[4] >> 40) & 0xFF;
338 r[1] = (a->n[4] >> 32) & 0xFF;
339 r[2] = (a->n[4] >> 24) & 0xFF;
340 r[3] = (a->n[4] >> 16) & 0xFF;
341 r[4] = (a->n[4] >> 8) & 0xFF;
342 r[5] = a->n[4] & 0xFF;
343 r[6] = (a->n[3] >> 44) & 0xFF;
344 r[7] = (a->n[3] >> 36) & 0xFF;
345 r[8] = (a->n[3] >> 28) & 0xFF;
346 r[9] = (a->n[3] >> 20) & 0xFF;
347 r[10] = (a->n[3] >> 12) & 0xFF;
348 r[11] = (a->n[3] >> 4) & 0xFF;
349 r[12] = ((a->n[2] >> 48) & 0xF) | ((a->n[3] & 0xF) << 4);
350 r[13] = (a->n[2] >> 40) & 0xFF;
351 r[14] = (a->n[2] >> 32) & 0xFF;
352 r[15] = (a->n[2] >> 24) & 0xFF;
353 r[16] = (a->n[2] >> 16) & 0xFF;
354 r[17] = (a->n[2] >> 8) & 0xFF;
355 r[18] = a->n[2] & 0xFF;
356 r[19] = (a->n[1] >> 44) & 0xFF;
357 r[20] = (a->n[1] >> 36) & 0xFF;
358 r[21] = (a->n[1] >> 28) & 0xFF;
359 r[22] = (a->n[1] >> 20) & 0xFF;
360 r[23] = (a->n[1] >> 12) & 0xFF;
361 r[24] = (a->n[1] >> 4) & 0xFF;
362 r[25] = ((a->n[0] >> 48) & 0xF) | ((a->n[1] & 0xF) << 4);
363 r[26] = (a->n[0] >> 40) & 0xFF;
364 r[27] = (a->n[0] >> 32) & 0xFF;
365 r[28] = (a->n[0] >> 24) & 0xFF;
366 r[29] = (a->n[0] >> 16) & 0xFF;
367 r[30] = (a->n[0] >> 8) & 0xFF;
368 r[31] = a->n[0] & 0xFF;
369 }
370
secp256k1_fe_negate(secp256k1_fe * r,const secp256k1_fe * a,int m)371 SECP256K1_INLINE static void secp256k1_fe_negate(secp256k1_fe *r, const secp256k1_fe *a, int m) {
372 #ifdef VERIFY
373 VERIFY_CHECK(a->magnitude <= m);
374 secp256k1_fe_verify(a);
375 #endif
376 r->n[0] = 0xFFFFEFFFFFC2FULL * 2 * (m + 1) - a->n[0];
377 r->n[1] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[1];
378 r->n[2] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[2];
379 r->n[3] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[3];
380 r->n[4] = 0x0FFFFFFFFFFFFULL * 2 * (m + 1) - a->n[4];
381 #ifdef VERIFY
382 r->magnitude = m + 1;
383 r->normalized = 0;
384 secp256k1_fe_verify(r);
385 #endif
386 }
387
secp256k1_fe_mul_int(secp256k1_fe * r,int a)388 SECP256K1_INLINE static void secp256k1_fe_mul_int(secp256k1_fe *r, int a) {
389 r->n[0] *= a;
390 r->n[1] *= a;
391 r->n[2] *= a;
392 r->n[3] *= a;
393 r->n[4] *= a;
394 #ifdef VERIFY
395 r->magnitude *= a;
396 r->normalized = 0;
397 secp256k1_fe_verify(r);
398 #endif
399 }
400
secp256k1_fe_add(secp256k1_fe * r,const secp256k1_fe * a)401 SECP256K1_INLINE static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a) {
402 #ifdef VERIFY
403 secp256k1_fe_verify(a);
404 #endif
405 r->n[0] += a->n[0];
406 r->n[1] += a->n[1];
407 r->n[2] += a->n[2];
408 r->n[3] += a->n[3];
409 r->n[4] += a->n[4];
410 #ifdef VERIFY
411 r->magnitude += a->magnitude;
412 r->normalized = 0;
413 secp256k1_fe_verify(r);
414 #endif
415 }
416
secp256k1_fe_mul(secp256k1_fe * r,const secp256k1_fe * a,const secp256k1_fe * SECP256K1_RESTRICT b)417 static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b) {
418 #ifdef VERIFY
419 VERIFY_CHECK(a->magnitude <= 8);
420 VERIFY_CHECK(b->magnitude <= 8);
421 secp256k1_fe_verify(a);
422 secp256k1_fe_verify(b);
423 VERIFY_CHECK(r != b);
424 VERIFY_CHECK(a != b);
425 #endif
426 secp256k1_fe_mul_inner(r->n, a->n, b->n);
427 #ifdef VERIFY
428 r->magnitude = 1;
429 r->normalized = 0;
430 secp256k1_fe_verify(r);
431 #endif
432 }
433
secp256k1_fe_sqr(secp256k1_fe * r,const secp256k1_fe * a)434 static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a) {
435 #ifdef VERIFY
436 VERIFY_CHECK(a->magnitude <= 8);
437 secp256k1_fe_verify(a);
438 #endif
439 secp256k1_fe_sqr_inner(r->n, a->n);
440 #ifdef VERIFY
441 r->magnitude = 1;
442 r->normalized = 0;
443 secp256k1_fe_verify(r);
444 #endif
445 }
446
secp256k1_fe_cmov(secp256k1_fe * r,const secp256k1_fe * a,int flag)447 static SECP256K1_INLINE void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag) {
448 uint64_t mask0, mask1;
449 mask0 = flag + ~((uint64_t)0);
450 mask1 = ~mask0;
451 r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1);
452 r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1);
453 r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1);
454 r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1);
455 r->n[4] = (r->n[4] & mask0) | (a->n[4] & mask1);
456 #ifdef VERIFY
457 if (a->magnitude > r->magnitude) {
458 r->magnitude = a->magnitude;
459 }
460 r->normalized &= a->normalized;
461 #endif
462 }
463
secp256k1_fe_storage_cmov(secp256k1_fe_storage * r,const secp256k1_fe_storage * a,int flag)464 static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag) {
465 uint64_t mask0, mask1;
466 mask0 = flag + ~((uint64_t)0);
467 mask1 = ~mask0;
468 r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1);
469 r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1);
470 r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1);
471 r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1);
472 }
473
secp256k1_fe_to_storage(secp256k1_fe_storage * r,const secp256k1_fe * a)474 static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a) {
475 #ifdef VERIFY
476 VERIFY_CHECK(a->normalized);
477 #endif
478 r->n[0] = a->n[0] | a->n[1] << 52;
479 r->n[1] = a->n[1] >> 12 | a->n[2] << 40;
480 r->n[2] = a->n[2] >> 24 | a->n[3] << 28;
481 r->n[3] = a->n[3] >> 36 | a->n[4] << 16;
482 }
483
secp256k1_fe_from_storage(secp256k1_fe * r,const secp256k1_fe_storage * a)484 static SECP256K1_INLINE void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a) {
485 r->n[0] = a->n[0] & 0xFFFFFFFFFFFFFULL;
486 r->n[1] = a->n[0] >> 52 | ((a->n[1] << 12) & 0xFFFFFFFFFFFFFULL);
487 r->n[2] = a->n[1] >> 40 | ((a->n[2] << 24) & 0xFFFFFFFFFFFFFULL);
488 r->n[3] = a->n[2] >> 28 | ((a->n[3] << 36) & 0xFFFFFFFFFFFFFULL);
489 r->n[4] = a->n[3] >> 16;
490 #ifdef VERIFY
491 r->magnitude = 1;
492 r->normalized = 1;
493 #endif
494 }
495
496 #endif /* SECP256K1_FIELD_REPR_IMPL_H */
497