1 /* Id */
2 
3 /*
4  * Copyright (c) 1988-1997 Sam Leffler
5  * Copyright (c) 1991-1997 Silicon Graphics, Inc.
6  *
7  * Permission to use, copy, modify, distribute, and sell this software and
8  * its documentation for any purpose is hereby granted without fee, provided
9  * that (i) the above copyright notices and this permission notice appear in
10  * all copies of the software and related documentation, and (ii) the names of
11  * Sam Leffler and Silicon Graphics may not be used in any advertising or
12  * publicity relating to the software without the specific, prior written
13  * permission of Sam Leffler and Silicon Graphics.
14  *
15  * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
16  * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
17  * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
18  *
19  * IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
20  * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
21  * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
22  * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
23  * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
24  * OF THIS SOFTWARE.
25  */
26 
27 /*
28  * CIE L*a*b* to CIE XYZ and CIE XYZ to RGB conversion routines are taken
29  * from the VIPS library (http://www.vips.ecs.soton.ac.uk) with
30  * the permission of John Cupitt, the VIPS author.
31  */
32 
33 /*
34  * TIFF Library.
35  *
36  * Color space conversion routines.
37  */
38 
39 #include "tiffiop.h"
40 #include <math.h>
41 
42 /*
43  * Convert color value from the CIE L*a*b* 1976 space to CIE XYZ.
44  */
45 void
TIFFCIELabToXYZ(TIFFCIELabToRGB * cielab,uint32 l,int32 a,int32 b,float * X,float * Y,float * Z)46 TIFFCIELabToXYZ(TIFFCIELabToRGB *cielab, uint32 l, int32 a, int32 b,
47                 float *X, float *Y, float *Z)
48 {
49         float L = (float)l * 100.0F / 255.0F;
50         float cby, tmp;
51 
52         if( L < 8.856F ) {
53                 *Y = (L * cielab->Y0) / 903.292F;
54                 cby = 7.787F * (*Y / cielab->Y0) + 16.0F / 116.0F;
55         } else {
56                 cby = (L + 16.0F) / 116.0F;
57                 *Y = cielab->Y0 * cby * cby * cby;
58         }
59 
60         tmp = (float)a / 500.0F + cby;
61         if( tmp < 0.2069F )
62                 *X = cielab->X0 * (tmp - 0.13793F) / 7.787F;
63         else
64                 *X = cielab->X0 * tmp * tmp * tmp;
65 
66         tmp = cby - (float)b / 200.0F;
67         if( tmp < 0.2069F )
68                 *Z = cielab->Z0 * (tmp - 0.13793F) / 7.787F;
69         else
70                 *Z = cielab->Z0 * tmp * tmp * tmp;
71 }
72 
73 #define RINT(R) ((uint32)((R)>0?((R)+0.5):((R)-0.5)))
74 /*
75  * Convert color value from the XYZ space to RGB.
76  */
77 void
TIFFXYZToRGB(TIFFCIELabToRGB * cielab,float X,float Y,float Z,uint32 * r,uint32 * g,uint32 * b)78 TIFFXYZToRGB(TIFFCIELabToRGB *cielab, float X, float Y, float Z,
79              uint32 *r, uint32 *g, uint32 *b)
80 {
81         int i;
82         float Yr, Yg, Yb;
83         float *matrix = &cielab->display.d_mat[0][0];
84 
85         /* Multiply through the matrix to get luminosity values. */
86         Yr =  matrix[0] * X + matrix[1] * Y + matrix[2] * Z;
87         Yg =  matrix[3] * X + matrix[4] * Y + matrix[5] * Z;
88         Yb =  matrix[6] * X + matrix[7] * Y + matrix[8] * Z;
89 
90         /* Clip input */
91         Yr = TIFFmax(Yr, cielab->display.d_Y0R);
92         Yg = TIFFmax(Yg, cielab->display.d_Y0G);
93         Yb = TIFFmax(Yb, cielab->display.d_Y0B);
94 
95         /* Avoid overflow in case of wrong input values */
96         Yr = TIFFmin(Yr, cielab->display.d_YCR);
97         Yg = TIFFmin(Yg, cielab->display.d_YCG);
98         Yb = TIFFmin(Yb, cielab->display.d_YCB);
99 
100         /* Turn luminosity to colour value. */
101         i = (int)((Yr - cielab->display.d_Y0R) / cielab->rstep);
102         i = TIFFmin(cielab->range, i);
103         *r = RINT(cielab->Yr2r[i]);
104 
105         i = (int)((Yg - cielab->display.d_Y0G) / cielab->gstep);
106         i = TIFFmin(cielab->range, i);
107         *g = RINT(cielab->Yg2g[i]);
108 
109         i = (int)((Yb - cielab->display.d_Y0B) / cielab->bstep);
110         i = TIFFmin(cielab->range, i);
111         *b = RINT(cielab->Yb2b[i]);
112 
113         /* Clip output. */
114         *r = TIFFmin(*r, cielab->display.d_Vrwr);
115         *g = TIFFmin(*g, cielab->display.d_Vrwg);
116         *b = TIFFmin(*b, cielab->display.d_Vrwb);
117 }
118 #undef RINT
119 
120 /*
121  * Allocate conversion state structures and make look_up tables for
122  * the Yr,Yb,Yg <=> r,g,b conversions.
123  */
124 int
TIFFCIELabToRGBInit(TIFFCIELabToRGB * cielab,TIFFDisplay * display,float * refWhite)125 TIFFCIELabToRGBInit(TIFFCIELabToRGB* cielab,
126                     TIFFDisplay *display, float *refWhite)
127 {
128         int i;
129         double gamma2;
130 
131         cielab->range = CIELABTORGB_TABLE_RANGE;
132 
133         _TIFFmemcpy(&cielab->display, display, sizeof(TIFFDisplay));
134 
135         /* Red */
136         gamma2 = 1.0 / cielab->display.d_gammaR ;
137         cielab->rstep =
138                 (cielab->display.d_YCR - cielab->display.d_Y0R) / cielab->range;
139         for(i = 0; i <= cielab->range; i++) {
140                 cielab->Yr2r[i] = cielab->display.d_Vrwr
141                     * ((float)pow((double)i / cielab->range, gamma2));
142         }
143 
144         /* Green */
145         gamma2 = 1.0 / cielab->display.d_gammaG ;
146         cielab->gstep =
147             (cielab->display.d_YCR - cielab->display.d_Y0R) / cielab->range;
148         for(i = 0; i <= cielab->range; i++) {
149                 cielab->Yg2g[i] = cielab->display.d_Vrwg
150                     * ((float)pow((double)i / cielab->range, gamma2));
151         }
152 
153         /* Blue */
154         gamma2 = 1.0 / cielab->display.d_gammaB ;
155         cielab->bstep =
156             (cielab->display.d_YCR - cielab->display.d_Y0R) / cielab->range;
157         for(i = 0; i <= cielab->range; i++) {
158                 cielab->Yb2b[i] = cielab->display.d_Vrwb
159                     * ((float)pow((double)i / cielab->range, gamma2));
160         }
161 
162         /* Init reference white point */
163         cielab->X0 = refWhite[0];
164         cielab->Y0 = refWhite[1];
165         cielab->Z0 = refWhite[2];
166 
167         return 0;
168 }
169 
170 /*
171  * Convert color value from the YCbCr space to CIE XYZ.
172  * The colorspace conversion algorithm comes from the IJG v5a code;
173  * see below for more information on how it works.
174  */
175 #define SHIFT                   16
176 #define FIX(x)                  ((int32)((x) * (1L<<SHIFT) + 0.5))
177 #define ONE_HALF                ((int32)(1<<(SHIFT-1)))
178 #define Code2V(c, RB, RW, CR)   ((((c)-(int32)(RB))*(float)(CR))/(float)(((RW)-(RB)) ? ((RW)-(RB)) : 1))
179 #define CLAMP(f,min,max)        ((f)<(min)?(min):(f)>(max)?(max):(f))
180 #define HICLAMP(f,max)          ((f)>(max)?(max):(f))
181 
182 void
TIFFYCbCrtoRGB(TIFFYCbCrToRGB * ycbcr,uint32 Y,int32 Cb,int32 Cr,uint32 * r,uint32 * g,uint32 * b)183 TIFFYCbCrtoRGB(TIFFYCbCrToRGB *ycbcr, uint32 Y, int32 Cb, int32 Cr,
184                uint32 *r, uint32 *g, uint32 *b)
185 {
186         /* XXX: Only 8-bit YCbCr input supported for now */
187         Y = HICLAMP(Y, 255), Cb = CLAMP(Cb, 0, 255), Cr = CLAMP(Cr, 0, 255);
188 
189         *r = ycbcr->clamptab[ycbcr->Y_tab[Y] + ycbcr->Cr_r_tab[Cr]];
190         *g = ycbcr->clamptab[ycbcr->Y_tab[Y]
191             + (int)((ycbcr->Cb_g_tab[Cb] + ycbcr->Cr_g_tab[Cr]) >> SHIFT)];
192         *b = ycbcr->clamptab[ycbcr->Y_tab[Y] + ycbcr->Cb_b_tab[Cb]];
193 }
194 
195 /*
196  * Initialize the YCbCr->RGB conversion tables.  The conversion
197  * is done according to the 6.0 spec:
198  *
199  *    R = Y + Cr*(2 - 2*LumaRed)
200  *    B = Y + Cb*(2 - 2*LumaBlue)
201  *    G =   Y
202  *        - LumaBlue*Cb*(2-2*LumaBlue)/LumaGreen
203  *        - LumaRed*Cr*(2-2*LumaRed)/LumaGreen
204  *
205  * To avoid floating point arithmetic the fractional constants that
206  * come out of the equations are represented as fixed point values
207  * in the range 0...2^16.  We also eliminate multiplications by
208  * pre-calculating possible values indexed by Cb and Cr (this code
209  * assumes conversion is being done for 8-bit samples).
210  */
211 int
TIFFYCbCrToRGBInit(TIFFYCbCrToRGB * ycbcr,float * luma,float * refBlackWhite)212 TIFFYCbCrToRGBInit(TIFFYCbCrToRGB* ycbcr, float *luma, float *refBlackWhite)
213 {
214     TIFFRGBValue* clamptab;
215     int i;
216 
217 #define LumaRed     luma[0]
218 #define LumaGreen   luma[1]
219 #define LumaBlue    luma[2]
220 
221     clamptab = (TIFFRGBValue*)(
222         (tidata_t) ycbcr+TIFFroundup(sizeof (TIFFYCbCrToRGB), sizeof (long)));
223     _TIFFmemset(clamptab, 0, 256);              /* v < 0 => 0 */
224     ycbcr->clamptab = (clamptab += 256);
225     for (i = 0; i < 256; i++)
226         clamptab[i] = (TIFFRGBValue) i;
227     _TIFFmemset(clamptab+256, 255, 2*256);      /* v > 255 => 255 */
228     ycbcr->Cr_r_tab = (int*) (clamptab + 3*256);
229     ycbcr->Cb_b_tab = ycbcr->Cr_r_tab + 256;
230     ycbcr->Cr_g_tab = (int32*) (ycbcr->Cb_b_tab + 256);
231     ycbcr->Cb_g_tab = ycbcr->Cr_g_tab + 256;
232     ycbcr->Y_tab = ycbcr->Cb_g_tab + 256;
233 
234     { float f1 = 2-2*LumaRed;           int32 D1 = FIX(f1);
235       float f2 = LumaRed*f1/LumaGreen;  int32 D2 = -FIX(f2);
236       float f3 = 2-2*LumaBlue;          int32 D3 = FIX(f3);
237       float f4 = LumaBlue*f3/LumaGreen; int32 D4 = -FIX(f4);
238       int x;
239 
240 #undef LumaBlue
241 #undef LumaGreen
242 #undef LumaRed
243 
244       /*
245        * i is the actual input pixel value in the range 0..255
246        * Cb and Cr values are in the range -128..127 (actually
247        * they are in a range defined by the ReferenceBlackWhite
248        * tag) so there is some range shifting to do here when
249        * constructing tables indexed by the raw pixel data.
250        */
251       for (i = 0, x = -128; i < 256; i++, x++) {
252             int32 Cr = (int32)Code2V(x, refBlackWhite[4] - 128.0F,
253                             refBlackWhite[5] - 128.0F, 127);
254             int32 Cb = (int32)Code2V(x, refBlackWhite[2] - 128.0F,
255                             refBlackWhite[3] - 128.0F, 127);
256 
257             ycbcr->Cr_r_tab[i] = (int32)((D1*Cr + ONE_HALF)>>SHIFT);
258             ycbcr->Cb_b_tab[i] = (int32)((D3*Cb + ONE_HALF)>>SHIFT);
259             ycbcr->Cr_g_tab[i] = D2*Cr;
260             ycbcr->Cb_g_tab[i] = D4*Cb + ONE_HALF;
261             ycbcr->Y_tab[i] =
262                     (int32)Code2V(x + 128, refBlackWhite[0], refBlackWhite[1], 255);
263       }
264     }
265 
266     return 0;
267 }
268 #undef  HICLAMP
269 #undef  CLAMP
270 #undef  Code2V
271 #undef  SHIFT
272 #undef  ONE_HALF
273 #undef  FIX
274 
275 /* vim: set ts=8 sts=8 sw=8 noet: */
276