1 /* Distributed under the OSI-approved BSD 3-Clause License.  See accompanying
2    file Copyright.txt or https://cmake.org/licensing#kwsys for details.  */
3 #include "kwsysPrivate.h"
4 #include KWSYS_HEADER(MD5.h)
5 
6 /* Work-around CMake dependency scanning limitation.  This must
7    duplicate the above list of headers.  */
8 #if 0
9 #  include "MD5.h.in"
10 #endif
11 
12 #include <stddef.h> /* size_t */
13 #include <stdlib.h> /* malloc, free */
14 #include <string.h> /* memcpy, strlen */
15 
16 /* This MD5 implementation has been taken from a third party.  Slight
17    modifications to the arrangement of the code have been made to put
18    it in a single source file instead of a separate header and
19    implementation file.  */
20 
21 #if defined(__clang__) && !defined(__INTEL_COMPILER)
22 #  pragma clang diagnostic push
23 #  pragma clang diagnostic ignored "-Wcast-align"
24 #endif
25 
26 /*
27   Copyright (C) 1999, 2000, 2002 Aladdin Enterprises.  All rights reserved.
28 
29   This software is provided 'as-is', without any express or implied
30   warranty.  In no event will the authors be held liable for any damages
31   arising from the use of this software.
32 
33   Permission is granted to anyone to use this software for any purpose,
34   including commercial applications, and to alter it and redistribute it
35   freely, subject to the following restrictions:
36 
37   1. The origin of this software must not be misrepresented; you must not
38      claim that you wrote the original software. If you use this software
39      in a product, an acknowledgment in the product documentation would be
40      appreciated but is not required.
41   2. Altered source versions must be plainly marked as such, and must not be
42      misrepresented as being the original software.
43   3. This notice may not be removed or altered from any source distribution.
44 
45   L. Peter Deutsch
46   ghost@aladdin.com
47 
48  */
49 /*
50   Independent implementation of MD5 (RFC 1321).
51 
52   This code implements the MD5 Algorithm defined in RFC 1321, whose
53   text is available at
54         http://www.ietf.org/rfc/rfc1321.txt
55   The code is derived from the text of the RFC, including the test suite
56   (section A.5) but excluding the rest of Appendix A.  It does not include
57   any code or documentation that is identified in the RFC as being
58   copyrighted.
59 
60   The original and principal author of md5.c is L. Peter Deutsch
61   <ghost@aladdin.com>.  Other authors are noted in the change history
62   that follows (in reverse chronological order):
63 
64   2002-04-13 lpd Clarified derivation from RFC 1321; now handles byte order
65         either statically or dynamically; added missing #include <string.h>
66         in library.
67   2002-03-11 lpd Corrected argument list for main(), and added int return
68         type, in test program and T value program.
69   2002-02-21 lpd Added missing #include <stdio.h> in test program.
70   2000-07-03 lpd Patched to eliminate warnings about "constant is
71         unsigned in ANSI C, signed in traditional"; made test program
72         self-checking.
73   1999-11-04 lpd Edited comments slightly for automatic TOC extraction.
74   1999-10-18 lpd Fixed typo in header comment (ansi2knr rather than md5).
75   1999-05-03 lpd Original version.
76  */
77 
78 /*
79  * This package supports both compile-time and run-time determination of CPU
80  * byte order.  If ARCH_IS_BIG_ENDIAN is defined as 0, the code will be
81  * compiled to run only on little-endian CPUs; if ARCH_IS_BIG_ENDIAN is
82  * defined as non-zero, the code will be compiled to run only on big-endian
83  * CPUs; if ARCH_IS_BIG_ENDIAN is not defined, the code will be compiled to
84  * run on either big- or little-endian CPUs, but will run slightly less
85  * efficiently on either one than if ARCH_IS_BIG_ENDIAN is defined.
86  */
87 
88 typedef unsigned char md5_byte_t; /* 8-bit byte */
89 typedef unsigned int md5_word_t;  /* 32-bit word */
90 
91 /* Define the state of the MD5 Algorithm. */
92 typedef struct md5_state_s
93 {
94   md5_word_t count[2]; /* message length in bits, lsw first */
95   md5_word_t abcd[4];  /* digest buffer */
96   md5_byte_t buf[64];  /* accumulate block */
97 } md5_state_t;
98 
99 #undef BYTE_ORDER /* 1 = big-endian, -1 = little-endian, 0 = unknown */
100 #ifdef ARCH_IS_BIG_ENDIAN
101 #  define BYTE_ORDER (ARCH_IS_BIG_ENDIAN ? 1 : -1)
102 #else
103 #  define BYTE_ORDER 0
104 #endif
105 
106 #define T_MASK ((md5_word_t)~0)
107 #define T1 /* 0xd76aa478 */ (T_MASK ^ 0x28955b87)
108 #define T2 /* 0xe8c7b756 */ (T_MASK ^ 0x173848a9)
109 #define T3 0x242070db
110 #define T4 /* 0xc1bdceee */ (T_MASK ^ 0x3e423111)
111 #define T5 /* 0xf57c0faf */ (T_MASK ^ 0x0a83f050)
112 #define T6 0x4787c62a
113 #define T7 /* 0xa8304613 */ (T_MASK ^ 0x57cfb9ec)
114 #define T8 /* 0xfd469501 */ (T_MASK ^ 0x02b96afe)
115 #define T9 0x698098d8
116 #define T10 /* 0x8b44f7af */ (T_MASK ^ 0x74bb0850)
117 #define T11 /* 0xffff5bb1 */ (T_MASK ^ 0x0000a44e)
118 #define T12 /* 0x895cd7be */ (T_MASK ^ 0x76a32841)
119 #define T13 0x6b901122
120 #define T14 /* 0xfd987193 */ (T_MASK ^ 0x02678e6c)
121 #define T15 /* 0xa679438e */ (T_MASK ^ 0x5986bc71)
122 #define T16 0x49b40821
123 #define T17 /* 0xf61e2562 */ (T_MASK ^ 0x09e1da9d)
124 #define T18 /* 0xc040b340 */ (T_MASK ^ 0x3fbf4cbf)
125 #define T19 0x265e5a51
126 #define T20 /* 0xe9b6c7aa */ (T_MASK ^ 0x16493855)
127 #define T21 /* 0xd62f105d */ (T_MASK ^ 0x29d0efa2)
128 #define T22 0x02441453
129 #define T23 /* 0xd8a1e681 */ (T_MASK ^ 0x275e197e)
130 #define T24 /* 0xe7d3fbc8 */ (T_MASK ^ 0x182c0437)
131 #define T25 0x21e1cde6
132 #define T26 /* 0xc33707d6 */ (T_MASK ^ 0x3cc8f829)
133 #define T27 /* 0xf4d50d87 */ (T_MASK ^ 0x0b2af278)
134 #define T28 0x455a14ed
135 #define T29 /* 0xa9e3e905 */ (T_MASK ^ 0x561c16fa)
136 #define T30 /* 0xfcefa3f8 */ (T_MASK ^ 0x03105c07)
137 #define T31 0x676f02d9
138 #define T32 /* 0x8d2a4c8a */ (T_MASK ^ 0x72d5b375)
139 #define T33 /* 0xfffa3942 */ (T_MASK ^ 0x0005c6bd)
140 #define T34 /* 0x8771f681 */ (T_MASK ^ 0x788e097e)
141 #define T35 0x6d9d6122
142 #define T36 /* 0xfde5380c */ (T_MASK ^ 0x021ac7f3)
143 #define T37 /* 0xa4beea44 */ (T_MASK ^ 0x5b4115bb)
144 #define T38 0x4bdecfa9
145 #define T39 /* 0xf6bb4b60 */ (T_MASK ^ 0x0944b49f)
146 #define T40 /* 0xbebfbc70 */ (T_MASK ^ 0x4140438f)
147 #define T41 0x289b7ec6
148 #define T42 /* 0xeaa127fa */ (T_MASK ^ 0x155ed805)
149 #define T43 /* 0xd4ef3085 */ (T_MASK ^ 0x2b10cf7a)
150 #define T44 0x04881d05
151 #define T45 /* 0xd9d4d039 */ (T_MASK ^ 0x262b2fc6)
152 #define T46 /* 0xe6db99e5 */ (T_MASK ^ 0x1924661a)
153 #define T47 0x1fa27cf8
154 #define T48 /* 0xc4ac5665 */ (T_MASK ^ 0x3b53a99a)
155 #define T49 /* 0xf4292244 */ (T_MASK ^ 0x0bd6ddbb)
156 #define T50 0x432aff97
157 #define T51 /* 0xab9423a7 */ (T_MASK ^ 0x546bdc58)
158 #define T52 /* 0xfc93a039 */ (T_MASK ^ 0x036c5fc6)
159 #define T53 0x655b59c3
160 #define T54 /* 0x8f0ccc92 */ (T_MASK ^ 0x70f3336d)
161 #define T55 /* 0xffeff47d */ (T_MASK ^ 0x00100b82)
162 #define T56 /* 0x85845dd1 */ (T_MASK ^ 0x7a7ba22e)
163 #define T57 0x6fa87e4f
164 #define T58 /* 0xfe2ce6e0 */ (T_MASK ^ 0x01d3191f)
165 #define T59 /* 0xa3014314 */ (T_MASK ^ 0x5cfebceb)
166 #define T60 0x4e0811a1
167 #define T61 /* 0xf7537e82 */ (T_MASK ^ 0x08ac817d)
168 #define T62 /* 0xbd3af235 */ (T_MASK ^ 0x42c50dca)
169 #define T63 0x2ad7d2bb
170 #define T64 /* 0xeb86d391 */ (T_MASK ^ 0x14792c6e)
171 
md5_process(md5_state_t * pms,const md5_byte_t * data)172 static void md5_process(md5_state_t* pms, const md5_byte_t* data /*[64]*/)
173 {
174   md5_word_t a = pms->abcd[0];
175   md5_word_t b = pms->abcd[1];
176   md5_word_t c = pms->abcd[2];
177   md5_word_t d = pms->abcd[3];
178   md5_word_t t;
179 #if BYTE_ORDER > 0
180   /* Define storage only for big-endian CPUs. */
181   md5_word_t X[16];
182 #else
183   /* Define storage for little-endian or both types of CPUs. */
184   md5_word_t xbuf[16];
185   const md5_word_t* X;
186 #endif
187 
188   {
189 #if BYTE_ORDER == 0
190     /*
191      * Determine dynamically whether this is a big-endian or
192      * little-endian machine, since we can use a more efficient
193      * algorithm on the latter.
194      */
195     static const int w = 1;
196 
197     if (*((const md5_byte_t*)&w)) /* dynamic little-endian */
198 #endif
199 #if BYTE_ORDER <= 0 /* little-endian */
200     {
201       /*
202        * On little-endian machines, we can process properly aligned
203        * data without copying it.
204        */
205       if (!((data - (const md5_byte_t*)0) & 3)) {
206         /* data are properly aligned */
207         X = (const md5_word_t*)data;
208       } else {
209         /* not aligned */
210         memcpy(xbuf, data, 64);
211         X = xbuf;
212       }
213     }
214 #endif
215 #if BYTE_ORDER == 0
216     else /* dynamic big-endian */
217 #endif
218 #if BYTE_ORDER >= 0 /* big-endian */
219     {
220       /*
221        * On big-endian machines, we must arrange the bytes in the
222        * right order.
223        */
224       const md5_byte_t* xp = data;
225       int i;
226 
227 #  if BYTE_ORDER == 0
228       X = xbuf; /* (dynamic only) */
229 #  else
230 #    define xbuf X /* (static only) */
231 #  endif
232       for (i = 0; i < 16; ++i, xp += 4) {
233         xbuf[i] =
234           (md5_word_t)(xp[0] + (xp[1] << 8) + (xp[2] << 16) + (xp[3] << 24));
235       }
236     }
237 #endif
238   }
239 
240 #define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32 - (n))))
241 
242 /* Round 1. */
243 /* Let [abcd k s i] denote the operation
244    a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s). */
245 #define F(x, y, z) (((x) & (y)) | (~(x) & (z)))
246 #define SET(a, b, c, d, k, s, Ti)                                             \
247   t = a + F(b, c, d) + X[k] + (Ti);                                           \
248   a = ROTATE_LEFT(t, s) + b
249   /* Do the following 16 operations. */
250   SET(a, b, c, d, 0, 7, T1);
251   SET(d, a, b, c, 1, 12, T2);
252   SET(c, d, a, b, 2, 17, T3);
253   SET(b, c, d, a, 3, 22, T4);
254   SET(a, b, c, d, 4, 7, T5);
255   SET(d, a, b, c, 5, 12, T6);
256   SET(c, d, a, b, 6, 17, T7);
257   SET(b, c, d, a, 7, 22, T8);
258   SET(a, b, c, d, 8, 7, T9);
259   SET(d, a, b, c, 9, 12, T10);
260   SET(c, d, a, b, 10, 17, T11);
261   SET(b, c, d, a, 11, 22, T12);
262   SET(a, b, c, d, 12, 7, T13);
263   SET(d, a, b, c, 13, 12, T14);
264   SET(c, d, a, b, 14, 17, T15);
265   SET(b, c, d, a, 15, 22, T16);
266 #undef SET
267 
268 /* Round 2. */
269 /* Let [abcd k s i] denote the operation
270      a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s). */
271 #define G(x, y, z) (((x) & (z)) | ((y) & ~(z)))
272 #define SET(a, b, c, d, k, s, Ti)                                             \
273   t = a + G(b, c, d) + X[k] + (Ti);                                           \
274   a = ROTATE_LEFT(t, s) + b
275   /* Do the following 16 operations. */
276   SET(a, b, c, d, 1, 5, T17);
277   SET(d, a, b, c, 6, 9, T18);
278   SET(c, d, a, b, 11, 14, T19);
279   SET(b, c, d, a, 0, 20, T20);
280   SET(a, b, c, d, 5, 5, T21);
281   SET(d, a, b, c, 10, 9, T22);
282   SET(c, d, a, b, 15, 14, T23);
283   SET(b, c, d, a, 4, 20, T24);
284   SET(a, b, c, d, 9, 5, T25);
285   SET(d, a, b, c, 14, 9, T26);
286   SET(c, d, a, b, 3, 14, T27);
287   SET(b, c, d, a, 8, 20, T28);
288   SET(a, b, c, d, 13, 5, T29);
289   SET(d, a, b, c, 2, 9, T30);
290   SET(c, d, a, b, 7, 14, T31);
291   SET(b, c, d, a, 12, 20, T32);
292 #undef SET
293 
294 /* Round 3. */
295 /* Let [abcd k s t] denote the operation
296      a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s). */
297 #define H(x, y, z) ((x) ^ (y) ^ (z))
298 #define SET(a, b, c, d, k, s, Ti)                                             \
299   t = a + H(b, c, d) + X[k] + (Ti);                                           \
300   a = ROTATE_LEFT(t, s) + b
301   /* Do the following 16 operations. */
302   SET(a, b, c, d, 5, 4, T33);
303   SET(d, a, b, c, 8, 11, T34);
304   SET(c, d, a, b, 11, 16, T35);
305   SET(b, c, d, a, 14, 23, T36);
306   SET(a, b, c, d, 1, 4, T37);
307   SET(d, a, b, c, 4, 11, T38);
308   SET(c, d, a, b, 7, 16, T39);
309   SET(b, c, d, a, 10, 23, T40);
310   SET(a, b, c, d, 13, 4, T41);
311   SET(d, a, b, c, 0, 11, T42);
312   SET(c, d, a, b, 3, 16, T43);
313   SET(b, c, d, a, 6, 23, T44);
314   SET(a, b, c, d, 9, 4, T45);
315   SET(d, a, b, c, 12, 11, T46);
316   SET(c, d, a, b, 15, 16, T47);
317   SET(b, c, d, a, 2, 23, T48);
318 #undef SET
319 
320 /* Round 4. */
321 /* Let [abcd k s t] denote the operation
322      a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s). */
323 #define I(x, y, z) ((y) ^ ((x) | ~(z)))
324 #define SET(a, b, c, d, k, s, Ti)                                             \
325   t = a + I(b, c, d) + X[k] + (Ti);                                           \
326   a = ROTATE_LEFT(t, s) + b
327   /* Do the following 16 operations. */
328   SET(a, b, c, d, 0, 6, T49);
329   SET(d, a, b, c, 7, 10, T50);
330   SET(c, d, a, b, 14, 15, T51);
331   SET(b, c, d, a, 5, 21, T52);
332   SET(a, b, c, d, 12, 6, T53);
333   SET(d, a, b, c, 3, 10, T54);
334   SET(c, d, a, b, 10, 15, T55);
335   SET(b, c, d, a, 1, 21, T56);
336   SET(a, b, c, d, 8, 6, T57);
337   SET(d, a, b, c, 15, 10, T58);
338   SET(c, d, a, b, 6, 15, T59);
339   SET(b, c, d, a, 13, 21, T60);
340   SET(a, b, c, d, 4, 6, T61);
341   SET(d, a, b, c, 11, 10, T62);
342   SET(c, d, a, b, 2, 15, T63);
343   SET(b, c, d, a, 9, 21, T64);
344 #undef SET
345 
346   /* Then perform the following additions. (That is increment each
347      of the four registers by the value it had before this block
348      was started.) */
349   pms->abcd[0] += a;
350   pms->abcd[1] += b;
351   pms->abcd[2] += c;
352   pms->abcd[3] += d;
353 }
354 
355 /* Initialize the algorithm. */
md5_init(md5_state_t * pms)356 static void md5_init(md5_state_t* pms)
357 {
358   pms->count[0] = pms->count[1] = 0;
359   pms->abcd[0] = 0x67452301;
360   pms->abcd[1] = /*0xefcdab89*/ T_MASK ^ 0x10325476;
361   pms->abcd[2] = /*0x98badcfe*/ T_MASK ^ 0x67452301;
362   pms->abcd[3] = 0x10325476;
363 }
364 
365 /* Append a string to the message. */
md5_append(md5_state_t * pms,const md5_byte_t * data,size_t nbytes)366 static void md5_append(md5_state_t* pms, const md5_byte_t* data, size_t nbytes)
367 {
368   const md5_byte_t* p = data;
369   size_t left = nbytes;
370   size_t offset = (pms->count[0] >> 3) & 63;
371   md5_word_t nbits = (md5_word_t)(nbytes << 3);
372 
373   if (nbytes <= 0) {
374     return;
375   }
376 
377   /* Update the message length. */
378   pms->count[1] += (md5_word_t)(nbytes >> 29);
379   pms->count[0] += nbits;
380   if (pms->count[0] < nbits) {
381     pms->count[1]++;
382   }
383 
384   /* Process an initial partial block. */
385   if (offset) {
386     size_t copy = (offset + nbytes > 64 ? 64 - offset : nbytes);
387 
388     memcpy(pms->buf + offset, p, copy);
389     if (offset + copy < 64) {
390       return;
391     }
392     p += copy;
393     left -= copy;
394     md5_process(pms, pms->buf);
395   }
396 
397   /* Process full blocks. */
398   for (; left >= 64; p += 64, left -= 64) {
399     md5_process(pms, p);
400   }
401 
402   /* Process a final partial block. */
403   if (left) {
404     memcpy(pms->buf, p, left);
405   }
406 }
407 
408 /* Finish the message and return the digest. */
md5_finish(md5_state_t * pms,md5_byte_t digest[16])409 static void md5_finish(md5_state_t* pms, md5_byte_t digest[16])
410 {
411   static const md5_byte_t pad[64] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
412                                       0,    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
413                                       0,    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
414                                       0,    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
415                                       0,    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
416   md5_byte_t data[8];
417   int i;
418 
419   /* Save the length before padding. */
420   for (i = 0; i < 8; ++i) {
421     data[i] = (md5_byte_t)(pms->count[i >> 2] >> ((i & 3) << 3));
422   }
423   /* Pad to 56 bytes mod 64. */
424   md5_append(pms, pad, ((55 - (pms->count[0] >> 3)) & 63) + 1);
425   /* Append the length. */
426   md5_append(pms, data, 8);
427   for (i = 0; i < 16; ++i) {
428     digest[i] = (md5_byte_t)(pms->abcd[i >> 2] >> ((i & 3) << 3));
429   }
430 }
431 
432 #if defined(__clang__) && !defined(__INTEL_COMPILER)
433 #  pragma clang diagnostic pop
434 #endif
435 
436 /* Wrap up the MD5 state in our opaque structure.  */
437 struct kwsysMD5_s
438 {
439   md5_state_t md5_state;
440 };
441 
kwsysMD5_New(void)442 kwsysMD5* kwsysMD5_New(void)
443 {
444   /* Allocate a process control structure.  */
445   kwsysMD5* md5 = (kwsysMD5*)malloc(sizeof(kwsysMD5));
446   if (!md5) {
447     return 0;
448   }
449   return md5;
450 }
451 
kwsysMD5_Delete(kwsysMD5 * md5)452 void kwsysMD5_Delete(kwsysMD5* md5)
453 {
454   /* Make sure we have an instance.  */
455   if (!md5) {
456     return;
457   }
458 
459   /* Free memory.  */
460   free(md5);
461 }
462 
kwsysMD5_Initialize(kwsysMD5 * md5)463 void kwsysMD5_Initialize(kwsysMD5* md5)
464 {
465   md5_init(&md5->md5_state);
466 }
467 
kwsysMD5_Append(kwsysMD5 * md5,unsigned char const * data,int length)468 void kwsysMD5_Append(kwsysMD5* md5, unsigned char const* data, int length)
469 {
470   size_t dlen;
471   if (length < 0) {
472     dlen = strlen((char const*)data);
473   } else {
474     dlen = (size_t)length;
475   }
476   md5_append(&md5->md5_state, (md5_byte_t const*)data, dlen);
477 }
478 
kwsysMD5_Finalize(kwsysMD5 * md5,unsigned char digest[16])479 void kwsysMD5_Finalize(kwsysMD5* md5, unsigned char digest[16])
480 {
481   md5_finish(&md5->md5_state, (md5_byte_t*)digest);
482 }
483 
kwsysMD5_FinalizeHex(kwsysMD5 * md5,char buffer[32])484 void kwsysMD5_FinalizeHex(kwsysMD5* md5, char buffer[32])
485 {
486   unsigned char digest[16];
487   kwsysMD5_Finalize(md5, digest);
488   kwsysMD5_DigestToHex(digest, buffer);
489 }
490 
kwsysMD5_DigestToHex(unsigned char const digest[16],char buffer[32])491 void kwsysMD5_DigestToHex(unsigned char const digest[16], char buffer[32])
492 {
493   /* Map from 4-bit index to hexadecimal representation.  */
494   static char const hex[16] = { '0', '1', '2', '3', '4', '5', '6', '7',
495                                 '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' };
496 
497   /* Map each 4-bit block separately.  */
498   char* out = buffer;
499   int i;
500   for (i = 0; i < 16; ++i) {
501     *out++ = hex[digest[i] >> 4];
502     *out++ = hex[digest[i] & 0xF];
503   }
504 }
505