1*> \brief \b CUNBDB5 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download CUNBDB5 + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cunbdb5.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cunbdb5.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cunbdb5.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE CUNBDB5( M1, M2, N, X1, INCX1, X2, INCX2, Q1, LDQ1, Q2, 22* LDQ2, WORK, LWORK, INFO ) 23* 24* .. Scalar Arguments .. 25* INTEGER INCX1, INCX2, INFO, LDQ1, LDQ2, LWORK, M1, M2, 26* $ N 27* .. 28* .. Array Arguments .. 29* COMPLEX Q1(LDQ1,*), Q2(LDQ2,*), WORK(*), X1(*), X2(*) 30* .. 31* 32* 33*> \par Purpose: 34* ============= 35*> 36*>\verbatim 37*> 38*> CUNBDB5 orthogonalizes the column vector 39*> X = [ X1 ] 40*> [ X2 ] 41*> with respect to the columns of 42*> Q = [ Q1 ] . 43*> [ Q2 ] 44*> The columns of Q must be orthonormal. 45*> 46*> If the projection is zero according to Kahan's "twice is enough" 47*> criterion, then some other vector from the orthogonal complement 48*> is returned. This vector is chosen in an arbitrary but deterministic 49*> way. 50*> 51*>\endverbatim 52* 53* Arguments: 54* ========== 55* 56*> \param[in] M1 57*> \verbatim 58*> M1 is INTEGER 59*> The dimension of X1 and the number of rows in Q1. 0 <= M1. 60*> \endverbatim 61*> 62*> \param[in] M2 63*> \verbatim 64*> M2 is INTEGER 65*> The dimension of X2 and the number of rows in Q2. 0 <= M2. 66*> \endverbatim 67*> 68*> \param[in] N 69*> \verbatim 70*> N is INTEGER 71*> The number of columns in Q1 and Q2. 0 <= N. 72*> \endverbatim 73*> 74*> \param[in,out] X1 75*> \verbatim 76*> X1 is COMPLEX array, dimension (M1) 77*> On entry, the top part of the vector to be orthogonalized. 78*> On exit, the top part of the projected vector. 79*> \endverbatim 80*> 81*> \param[in] INCX1 82*> \verbatim 83*> INCX1 is INTEGER 84*> Increment for entries of X1. 85*> \endverbatim 86*> 87*> \param[in,out] X2 88*> \verbatim 89*> X2 is COMPLEX array, dimension (M2) 90*> On entry, the bottom part of the vector to be 91*> orthogonalized. On exit, the bottom part of the projected 92*> vector. 93*> \endverbatim 94*> 95*> \param[in] INCX2 96*> \verbatim 97*> INCX2 is INTEGER 98*> Increment for entries of X2. 99*> \endverbatim 100*> 101*> \param[in] Q1 102*> \verbatim 103*> Q1 is COMPLEX array, dimension (LDQ1, N) 104*> The top part of the orthonormal basis matrix. 105*> \endverbatim 106*> 107*> \param[in] LDQ1 108*> \verbatim 109*> LDQ1 is INTEGER 110*> The leading dimension of Q1. LDQ1 >= M1. 111*> \endverbatim 112*> 113*> \param[in] Q2 114*> \verbatim 115*> Q2 is COMPLEX array, dimension (LDQ2, N) 116*> The bottom part of the orthonormal basis matrix. 117*> \endverbatim 118*> 119*> \param[in] LDQ2 120*> \verbatim 121*> LDQ2 is INTEGER 122*> The leading dimension of Q2. LDQ2 >= M2. 123*> \endverbatim 124*> 125*> \param[out] WORK 126*> \verbatim 127*> WORK is COMPLEX array, dimension (LWORK) 128*> \endverbatim 129*> 130*> \param[in] LWORK 131*> \verbatim 132*> LWORK is INTEGER 133*> The dimension of the array WORK. LWORK >= N. 134*> \endverbatim 135*> 136*> \param[out] INFO 137*> \verbatim 138*> INFO is INTEGER 139*> = 0: successful exit. 140*> < 0: if INFO = -i, the i-th argument had an illegal value. 141*> \endverbatim 142* 143* Authors: 144* ======== 145* 146*> \author Univ. of Tennessee 147*> \author Univ. of California Berkeley 148*> \author Univ. of Colorado Denver 149*> \author NAG Ltd. 150* 151*> \ingroup complexOTHERcomputational 152* 153* ===================================================================== 154 SUBROUTINE CUNBDB5( M1, M2, N, X1, INCX1, X2, INCX2, Q1, LDQ1, Q2, 155 $ LDQ2, WORK, LWORK, INFO ) 156* 157* -- LAPACK computational routine -- 158* -- LAPACK is a software package provided by Univ. of Tennessee, -- 159* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 160* 161* .. Scalar Arguments .. 162 INTEGER INCX1, INCX2, INFO, LDQ1, LDQ2, LWORK, M1, M2, 163 $ N 164* .. 165* .. Array Arguments .. 166 COMPLEX Q1(LDQ1,*), Q2(LDQ2,*), WORK(*), X1(*), X2(*) 167* .. 168* 169* ===================================================================== 170* 171* .. Parameters .. 172 COMPLEX ONE, ZERO 173 PARAMETER ( ONE = (1.0E0,0.0E0), ZERO = (0.0E0,0.0E0) ) 174* .. 175* .. Local Scalars .. 176 INTEGER CHILDINFO, I, J 177* .. 178* .. External Subroutines .. 179 EXTERNAL CUNBDB6, XERBLA 180* .. 181* .. External Functions .. 182 REAL SCNRM2 183 EXTERNAL SCNRM2 184* .. 185* .. Intrinsic Function .. 186 INTRINSIC MAX 187* .. 188* .. Executable Statements .. 189* 190* Test input arguments 191* 192 INFO = 0 193 IF( M1 .LT. 0 ) THEN 194 INFO = -1 195 ELSE IF( M2 .LT. 0 ) THEN 196 INFO = -2 197 ELSE IF( N .LT. 0 ) THEN 198 INFO = -3 199 ELSE IF( INCX1 .LT. 1 ) THEN 200 INFO = -5 201 ELSE IF( INCX2 .LT. 1 ) THEN 202 INFO = -7 203 ELSE IF( LDQ1 .LT. MAX( 1, M1 ) ) THEN 204 INFO = -9 205 ELSE IF( LDQ2 .LT. MAX( 1, M2 ) ) THEN 206 INFO = -11 207 ELSE IF( LWORK .LT. N ) THEN 208 INFO = -13 209 END IF 210* 211 IF( INFO .NE. 0 ) THEN 212 CALL XERBLA( 'CUNBDB5', -INFO ) 213 RETURN 214 END IF 215* 216* Project X onto the orthogonal complement of Q 217* 218 CALL CUNBDB6( M1, M2, N, X1, INCX1, X2, INCX2, Q1, LDQ1, Q2, LDQ2, 219 $ WORK, LWORK, CHILDINFO ) 220* 221* If the projection is nonzero, then return 222* 223 IF( SCNRM2(M1,X1,INCX1) .NE. ZERO 224 $ .OR. SCNRM2(M2,X2,INCX2) .NE. ZERO ) THEN 225 RETURN 226 END IF 227* 228* Project each standard basis vector e_1,...,e_M1 in turn, stopping 229* when a nonzero projection is found 230* 231 DO I = 1, M1 232 DO J = 1, M1 233 X1(J) = ZERO 234 END DO 235 X1(I) = ONE 236 DO J = 1, M2 237 X2(J) = ZERO 238 END DO 239 CALL CUNBDB6( M1, M2, N, X1, INCX1, X2, INCX2, Q1, LDQ1, Q2, 240 $ LDQ2, WORK, LWORK, CHILDINFO ) 241 IF( SCNRM2(M1,X1,INCX1) .NE. ZERO 242 $ .OR. SCNRM2(M2,X2,INCX2) .NE. ZERO ) THEN 243 RETURN 244 END IF 245 END DO 246* 247* Project each standard basis vector e_(M1+1),...,e_(M1+M2) in turn, 248* stopping when a nonzero projection is found 249* 250 DO I = 1, M2 251 DO J = 1, M1 252 X1(J) = ZERO 253 END DO 254 DO J = 1, M2 255 X2(J) = ZERO 256 END DO 257 X2(I) = ONE 258 CALL CUNBDB6( M1, M2, N, X1, INCX1, X2, INCX2, Q1, LDQ1, Q2, 259 $ LDQ2, WORK, LWORK, CHILDINFO ) 260 IF( SCNRM2(M1,X1,INCX1) .NE. ZERO 261 $ .OR. SCNRM2(M2,X2,INCX2) .NE. ZERO ) THEN 262 RETURN 263 END IF 264 END DO 265* 266 RETURN 267* 268* End of CUNBDB5 269* 270 END 271 272