1*> \brief \b SDRGEV
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*  Definition:
9*  ===========
10*
11*       SUBROUTINE SDRGEV( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
12*                          NOUNIT, A, LDA, B, S, T, Q, LDQ, Z, QE, LDQE,
13*                          ALPHAR, ALPHAI, BETA, ALPHR1, ALPHI1, BETA1,
14*                          WORK, LWORK, RESULT, INFO )
15*
16*       .. Scalar Arguments ..
17*       INTEGER            INFO, LDA, LDQ, LDQE, LWORK, NOUNIT, NSIZES,
18*      $                   NTYPES
19*       REAL               THRESH
20*       ..
21*       .. Array Arguments ..
22*       LOGICAL            DOTYPE( * )
23*       INTEGER            ISEED( 4 ), NN( * )
24*       REAL               A( LDA, * ), ALPHAI( * ), ALPHI1( * ),
25*      $                   ALPHAR( * ), ALPHR1( * ), B( LDA, * ),
26*      $                   BETA( * ), BETA1( * ), Q( LDQ, * ),
27*      $                   QE( LDQE, * ), RESULT( * ), S( LDA, * ),
28*      $                   T( LDA, * ), WORK( * ), Z( LDQ, * )
29*       ..
30*
31*
32*> \par Purpose:
33*  =============
34*>
35*> \verbatim
36*>
37*> SDRGEV checks the nonsymmetric generalized eigenvalue problem driver
38*> routine SGGEV.
39*>
40*> SGGEV computes for a pair of n-by-n nonsymmetric matrices (A,B) the
41*> generalized eigenvalues and, optionally, the left and right
42*> eigenvectors.
43*>
44*> A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
45*> or a ratio  alpha/beta = w, such that A - w*B is singular.  It is
46*> usually represented as the pair (alpha,beta), as there is reasonable
47*> interpretation for beta=0, and even for both being zero.
48*>
49*> A right generalized eigenvector corresponding to a generalized
50*> eigenvalue  w  for a pair of matrices (A,B) is a vector r  such that
51*> (A - wB) * r = 0.  A left generalized eigenvector is a vector l such
52*> that l**H * (A - wB) = 0, where l**H is the conjugate-transpose of l.
53*>
54*> When SDRGEV is called, a number of matrix "sizes" ("n's") and a
55*> number of matrix "types" are specified.  For each size ("n")
56*> and each type of matrix, a pair of matrices (A, B) will be generated
57*> and used for testing.  For each matrix pair, the following tests
58*> will be performed and compared with the threshold THRESH.
59*>
60*> Results from SGGEV:
61*>
62*> (1)  max over all left eigenvalue/-vector pairs (alpha/beta,l) of
63*>
64*>      | VL**H * (beta A - alpha B) |/( ulp max(|beta A|, |alpha B|) )
65*>
66*>      where VL**H is the conjugate-transpose of VL.
67*>
68*> (2)  | |VL(i)| - 1 | / ulp and whether largest component real
69*>
70*>      VL(i) denotes the i-th column of VL.
71*>
72*> (3)  max over all left eigenvalue/-vector pairs (alpha/beta,r) of
73*>
74*>      | (beta A - alpha B) * VR | / ( ulp max(|beta A|, |alpha B|) )
75*>
76*> (4)  | |VR(i)| - 1 | / ulp and whether largest component real
77*>
78*>      VR(i) denotes the i-th column of VR.
79*>
80*> (5)  W(full) = W(partial)
81*>      W(full) denotes the eigenvalues computed when both l and r
82*>      are also computed, and W(partial) denotes the eigenvalues
83*>      computed when only W, only W and r, or only W and l are
84*>      computed.
85*>
86*> (6)  VL(full) = VL(partial)
87*>      VL(full) denotes the left eigenvectors computed when both l
88*>      and r are computed, and VL(partial) denotes the result
89*>      when only l is computed.
90*>
91*> (7)  VR(full) = VR(partial)
92*>      VR(full) denotes the right eigenvectors computed when both l
93*>      and r are also computed, and VR(partial) denotes the result
94*>      when only l is computed.
95*>
96*>
97*> Test Matrices
98*> ---- --------
99*>
100*> The sizes of the test matrices are specified by an array
101*> NN(1:NSIZES); the value of each element NN(j) specifies one size.
102*> The "types" are specified by a logical array DOTYPE( 1:NTYPES ); if
103*> DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
104*> Currently, the list of possible types is:
105*>
106*> (1)  ( 0, 0 )         (a pair of zero matrices)
107*>
108*> (2)  ( I, 0 )         (an identity and a zero matrix)
109*>
110*> (3)  ( 0, I )         (an identity and a zero matrix)
111*>
112*> (4)  ( I, I )         (a pair of identity matrices)
113*>
114*>         t   t
115*> (5)  ( J , J  )       (a pair of transposed Jordan blocks)
116*>
117*>                                     t                ( I   0  )
118*> (6)  ( X, Y )         where  X = ( J   0  )  and Y = (      t )
119*>                                  ( 0   I  )          ( 0   J  )
120*>                       and I is a k x k identity and J a (k+1)x(k+1)
121*>                       Jordan block; k=(N-1)/2
122*>
123*> (7)  ( D, I )         where D is diag( 0, 1,..., N-1 ) (a diagonal
124*>                       matrix with those diagonal entries.)
125*> (8)  ( I, D )
126*>
127*> (9)  ( big*D, small*I ) where "big" is near overflow and small=1/big
128*>
129*> (10) ( small*D, big*I )
130*>
131*> (11) ( big*I, small*D )
132*>
133*> (12) ( small*I, big*D )
134*>
135*> (13) ( big*D, big*I )
136*>
137*> (14) ( small*D, small*I )
138*>
139*> (15) ( D1, D2 )        where D1 is diag( 0, 0, 1, ..., N-3, 0 ) and
140*>                        D2 is diag( 0, N-3, N-4,..., 1, 0, 0 )
141*>           t   t
142*> (16) Q ( J , J ) Z     where Q and Z are random orthogonal matrices.
143*>
144*> (17) Q ( T1, T2 ) Z    where T1 and T2 are upper triangular matrices
145*>                        with random O(1) entries above the diagonal
146*>                        and diagonal entries diag(T1) =
147*>                        ( 0, 0, 1, ..., N-3, 0 ) and diag(T2) =
148*>                        ( 0, N-3, N-4,..., 1, 0, 0 )
149*>
150*> (18) Q ( T1, T2 ) Z    diag(T1) = ( 0, 0, 1, 1, s, ..., s, 0 )
151*>                        diag(T2) = ( 0, 1, 0, 1,..., 1, 0 )
152*>                        s = machine precision.
153*>
154*> (19) Q ( T1, T2 ) Z    diag(T1)=( 0,0,1,1, 1-d, ..., 1-(N-5)*d=s, 0 )
155*>                        diag(T2) = ( 0, 1, 0, 1, ..., 1, 0 )
156*>
157*>                                                        N-5
158*> (20) Q ( T1, T2 ) Z    diag(T1)=( 0, 0, 1, 1, a, ..., a   =s, 0 )
159*>                        diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 )
160*>
161*> (21) Q ( T1, T2 ) Z    diag(T1)=( 0, 0, 1, r1, r2, ..., r(N-4), 0 )
162*>                        diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 )
163*>                        where r1,..., r(N-4) are random.
164*>
165*> (22) Q ( big*T1, small*T2 ) Z    diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
166*>                                  diag(T2) = ( 0, 1, ..., 1, 0, 0 )
167*>
168*> (23) Q ( small*T1, big*T2 ) Z    diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
169*>                                  diag(T2) = ( 0, 1, ..., 1, 0, 0 )
170*>
171*> (24) Q ( small*T1, small*T2 ) Z  diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
172*>                                  diag(T2) = ( 0, 1, ..., 1, 0, 0 )
173*>
174*> (25) Q ( big*T1, big*T2 ) Z      diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
175*>                                  diag(T2) = ( 0, 1, ..., 1, 0, 0 )
176*>
177*> (26) Q ( T1, T2 ) Z     where T1 and T2 are random upper-triangular
178*>                         matrices.
179*>
180*> \endverbatim
181*
182*  Arguments:
183*  ==========
184*
185*> \param[in] NSIZES
186*> \verbatim
187*>          NSIZES is INTEGER
188*>          The number of sizes of matrices to use.  If it is zero,
189*>          SDRGES does nothing.  NSIZES >= 0.
190*> \endverbatim
191*>
192*> \param[in] NN
193*> \verbatim
194*>          NN is INTEGER array, dimension (NSIZES)
195*>          An array containing the sizes to be used for the matrices.
196*>          Zero values will be skipped.  NN >= 0.
197*> \endverbatim
198*>
199*> \param[in] NTYPES
200*> \verbatim
201*>          NTYPES is INTEGER
202*>          The number of elements in DOTYPE.   If it is zero, SDRGES
203*>          does nothing.  It must be at least zero.  If it is MAXTYP+1
204*>          and NSIZES is 1, then an additional type, MAXTYP+1 is
205*>          defined, which is to use whatever matrix is in A.  This
206*>          is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
207*>          DOTYPE(MAXTYP+1) is .TRUE. .
208*> \endverbatim
209*>
210*> \param[in] DOTYPE
211*> \verbatim
212*>          DOTYPE is LOGICAL array, dimension (NTYPES)
213*>          If DOTYPE(j) is .TRUE., then for each size in NN a
214*>          matrix of that size and of type j will be generated.
215*>          If NTYPES is smaller than the maximum number of types
216*>          defined (PARAMETER MAXTYP), then types NTYPES+1 through
217*>          MAXTYP will not be generated. If NTYPES is larger
218*>          than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
219*>          will be ignored.
220*> \endverbatim
221*>
222*> \param[in,out] ISEED
223*> \verbatim
224*>          ISEED is INTEGER array, dimension (4)
225*>          On entry ISEED specifies the seed of the random number
226*>          generator. The array elements should be between 0 and 4095;
227*>          if not they will be reduced mod 4096. Also, ISEED(4) must
228*>          be odd.  The random number generator uses a linear
229*>          congruential sequence limited to small integers, and so
230*>          should produce machine independent random numbers. The
231*>          values of ISEED are changed on exit, and can be used in the
232*>          next call to SDRGES to continue the same random number
233*>          sequence.
234*> \endverbatim
235*>
236*> \param[in] THRESH
237*> \verbatim
238*>          THRESH is REAL
239*>          A test will count as "failed" if the "error", computed as
240*>          described above, exceeds THRESH.  Note that the error is
241*>          scaled to be O(1), so THRESH should be a reasonably small
242*>          multiple of 1, e.g., 10 or 100.  In particular, it should
243*>          not depend on the precision (single vs. double) or the size
244*>          of the matrix.  It must be at least zero.
245*> \endverbatim
246*>
247*> \param[in] NOUNIT
248*> \verbatim
249*>          NOUNIT is INTEGER
250*>          The FORTRAN unit number for printing out error messages
251*>          (e.g., if a routine returns IERR not equal to 0.)
252*> \endverbatim
253*>
254*> \param[in,out] A
255*> \verbatim
256*>          A is REAL array,
257*>                                       dimension(LDA, max(NN))
258*>          Used to hold the original A matrix.  Used as input only
259*>          if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and
260*>          DOTYPE(MAXTYP+1)=.TRUE.
261*> \endverbatim
262*>
263*> \param[in] LDA
264*> \verbatim
265*>          LDA is INTEGER
266*>          The leading dimension of A, B, S, and T.
267*>          It must be at least 1 and at least max( NN ).
268*> \endverbatim
269*>
270*> \param[in,out] B
271*> \verbatim
272*>          B is REAL array,
273*>                                       dimension(LDA, max(NN))
274*>          Used to hold the original B matrix.  Used as input only
275*>          if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and
276*>          DOTYPE(MAXTYP+1)=.TRUE.
277*> \endverbatim
278*>
279*> \param[out] S
280*> \verbatim
281*>          S is REAL array,
282*>                                 dimension (LDA, max(NN))
283*>          The Schur form matrix computed from A by SGGES.  On exit, S
284*>          contains the Schur form matrix corresponding to the matrix
285*>          in A.
286*> \endverbatim
287*>
288*> \param[out] T
289*> \verbatim
290*>          T is REAL array,
291*>                                 dimension (LDA, max(NN))
292*>          The upper triangular matrix computed from B by SGGES.
293*> \endverbatim
294*>
295*> \param[out] Q
296*> \verbatim
297*>          Q is REAL array,
298*>                                 dimension (LDQ, max(NN))
299*>          The (left) eigenvectors matrix computed by SGGEV.
300*> \endverbatim
301*>
302*> \param[in] LDQ
303*> \verbatim
304*>          LDQ is INTEGER
305*>          The leading dimension of Q and Z. It must
306*>          be at least 1 and at least max( NN ).
307*> \endverbatim
308*>
309*> \param[out] Z
310*> \verbatim
311*>          Z is REAL array, dimension( LDQ, max(NN) )
312*>          The (right) orthogonal matrix computed by SGGES.
313*> \endverbatim
314*>
315*> \param[out] QE
316*> \verbatim
317*>          QE is REAL array, dimension( LDQ, max(NN) )
318*>          QE holds the computed right or left eigenvectors.
319*> \endverbatim
320*>
321*> \param[in] LDQE
322*> \verbatim
323*>          LDQE is INTEGER
324*>          The leading dimension of QE. LDQE >= max(1,max(NN)).
325*> \endverbatim
326*>
327*> \param[out] ALPHAR
328*> \verbatim
329*>          ALPHAR is REAL array, dimension (max(NN))
330*> \endverbatim
331*>
332*> \param[out] ALPHAI
333*> \verbatim
334*>          ALPHAI is REAL array, dimension (max(NN))
335*> \endverbatim
336*>
337*> \param[out] BETA
338*> \verbatim
339*>          BETA is REAL array, dimension (max(NN))
340*> \verbatim
341*>          The generalized eigenvalues of (A,B) computed by SGGEV.
342*>          ( ALPHAR(k)+ALPHAI(k)*i ) / BETA(k) is the k-th
343*>          generalized eigenvalue of A and B.
344*> \endverbatim
345*>
346*> \param[out] ALPHR1
347*> \verbatim
348*>          ALPHR1 is REAL array, dimension (max(NN))
349*> \endverbatim
350*>
351*> \param[out] ALPHI1
352*> \verbatim
353*>          ALPHI1 is REAL array, dimension (max(NN))
354*> \endverbatim
355*>
356*> \param[out] BETA1
357*> \verbatim
358*>          BETA1 is REAL array, dimension (max(NN))
359*>
360*>          Like ALPHAR, ALPHAI, BETA, these arrays contain the
361*>          eigenvalues of A and B, but those computed when SGGEV only
362*>          computes a partial eigendecomposition, i.e. not the
363*>          eigenvalues and left and right eigenvectors.
364*> \endverbatim
365*>
366*> \param[out] WORK
367*> \verbatim
368*>          WORK is REAL array, dimension (LWORK)
369*> \endverbatim
370*>
371*> \param[in] LWORK
372*> \verbatim
373*>          LWORK is INTEGER
374*>          The number of entries in WORK.  LWORK >= MAX( 8*N, N*(N+1) ).
375*> \endverbatim
376*>
377*> \param[out] RESULT
378*> \verbatim
379*>          RESULT is REAL array, dimension (2)
380*>          The values computed by the tests described above.
381*>          The values are currently limited to 1/ulp, to avoid overflow.
382*> \endverbatim
383*>
384*> \param[out] INFO
385*> \verbatim
386*>          INFO is INTEGER
387*>          = 0:  successful exit
388*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
389*>          > 0:  A routine returned an error code.  INFO is the
390*>                absolute value of the INFO value returned.
391*> \endverbatim
392*
393*  Authors:
394*  ========
395*
396*> \author Univ. of Tennessee
397*> \author Univ. of California Berkeley
398*> \author Univ. of Colorado Denver
399*> \author NAG Ltd.
400*
401*> \ingroup single_eig
402*
403*  =====================================================================
404      SUBROUTINE SDRGEV( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
405     $                   NOUNIT, A, LDA, B, S, T, Q, LDQ, Z, QE, LDQE,
406     $                   ALPHAR, ALPHAI, BETA, ALPHR1, ALPHI1, BETA1,
407     $                   WORK, LWORK, RESULT, INFO )
408*
409*  -- LAPACK test routine --
410*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
411*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
412*
413*     .. Scalar Arguments ..
414      INTEGER            INFO, LDA, LDQ, LDQE, LWORK, NOUNIT, NSIZES,
415     $                   NTYPES
416      REAL               THRESH
417*     ..
418*     .. Array Arguments ..
419      LOGICAL            DOTYPE( * )
420      INTEGER            ISEED( 4 ), NN( * )
421      REAL               A( LDA, * ), ALPHAI( * ), ALPHI1( * ),
422     $                   ALPHAR( * ), ALPHR1( * ), B( LDA, * ),
423     $                   BETA( * ), BETA1( * ), Q( LDQ, * ),
424     $                   QE( LDQE, * ), RESULT( * ), S( LDA, * ),
425     $                   T( LDA, * ), WORK( * ), Z( LDQ, * )
426*     ..
427*
428*  =====================================================================
429*
430*     .. Parameters ..
431      REAL               ZERO, ONE
432      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
433      INTEGER            MAXTYP
434      PARAMETER          ( MAXTYP = 26 )
435*     ..
436*     .. Local Scalars ..
437      LOGICAL            BADNN
438      INTEGER            I, IADD, IERR, IN, J, JC, JR, JSIZE, JTYPE,
439     $                   MAXWRK, MINWRK, MTYPES, N, N1, NERRS, NMATS,
440     $                   NMAX, NTESTT
441      REAL               SAFMAX, SAFMIN, ULP, ULPINV
442*     ..
443*     .. Local Arrays ..
444      INTEGER            IASIGN( MAXTYP ), IBSIGN( MAXTYP ),
445     $                   IOLDSD( 4 ), KADD( 6 ), KAMAGN( MAXTYP ),
446     $                   KATYPE( MAXTYP ), KAZERO( MAXTYP ),
447     $                   KBMAGN( MAXTYP ), KBTYPE( MAXTYP ),
448     $                   KBZERO( MAXTYP ), KCLASS( MAXTYP ),
449     $                   KTRIAN( MAXTYP ), KZ1( 6 ), KZ2( 6 )
450      REAL               RMAGN( 0: 3 )
451*     ..
452*     .. External Functions ..
453      INTEGER            ILAENV
454      REAL               SLAMCH, SLARND
455      EXTERNAL           ILAENV, SLAMCH, SLARND
456*     ..
457*     .. External Subroutines ..
458      EXTERNAL           ALASVM, SGET52, SGGEV, SLABAD, SLACPY, SLARFG,
459     $                   SLASET, SLATM4, SORM2R, XERBLA
460*     ..
461*     .. Intrinsic Functions ..
462      INTRINSIC          ABS, MAX, MIN, REAL, SIGN
463*     ..
464*     .. Data statements ..
465      DATA               KCLASS / 15*1, 10*2, 1*3 /
466      DATA               KZ1 / 0, 1, 2, 1, 3, 3 /
467      DATA               KZ2 / 0, 0, 1, 2, 1, 1 /
468      DATA               KADD / 0, 0, 0, 0, 3, 2 /
469      DATA               KATYPE / 0, 1, 0, 1, 2, 3, 4, 1, 4, 4, 1, 1, 4,
470     $                   4, 4, 2, 4, 5, 8, 7, 9, 4*4, 0 /
471      DATA               KBTYPE / 0, 0, 1, 1, 2, -3, 1, 4, 1, 1, 4, 4,
472     $                   1, 1, -4, 2, -4, 8*8, 0 /
473      DATA               KAZERO / 6*1, 2, 1, 2*2, 2*1, 2*2, 3, 1, 3,
474     $                   4*5, 4*3, 1 /
475      DATA               KBZERO / 6*1, 1, 2, 2*1, 2*2, 2*1, 4, 1, 4,
476     $                   4*6, 4*4, 1 /
477      DATA               KAMAGN / 8*1, 2, 3, 2, 3, 2, 3, 7*1, 2, 3, 3,
478     $                   2, 1 /
479      DATA               KBMAGN / 8*1, 3, 2, 3, 2, 2, 3, 7*1, 3, 2, 3,
480     $                   2, 1 /
481      DATA               KTRIAN / 16*0, 10*1 /
482      DATA               IASIGN / 6*0, 2, 0, 2*2, 2*0, 3*2, 0, 2, 3*0,
483     $                   5*2, 0 /
484      DATA               IBSIGN / 7*0, 2, 2*0, 2*2, 2*0, 2, 0, 2, 9*0 /
485*     ..
486*     .. Executable Statements ..
487*
488*     Check for errors
489*
490      INFO = 0
491*
492      BADNN = .FALSE.
493      NMAX = 1
494      DO 10 J = 1, NSIZES
495         NMAX = MAX( NMAX, NN( J ) )
496         IF( NN( J ).LT.0 )
497     $      BADNN = .TRUE.
498   10 CONTINUE
499*
500      IF( NSIZES.LT.0 ) THEN
501         INFO = -1
502      ELSE IF( BADNN ) THEN
503         INFO = -2
504      ELSE IF( NTYPES.LT.0 ) THEN
505         INFO = -3
506      ELSE IF( THRESH.LT.ZERO ) THEN
507         INFO = -6
508      ELSE IF( LDA.LE.1 .OR. LDA.LT.NMAX ) THEN
509         INFO = -9
510      ELSE IF( LDQ.LE.1 .OR. LDQ.LT.NMAX ) THEN
511         INFO = -14
512      ELSE IF( LDQE.LE.1 .OR. LDQE.LT.NMAX ) THEN
513         INFO = -17
514      END IF
515*
516*     Compute workspace
517*      (Note: Comments in the code beginning "Workspace:" describe the
518*       minimal amount of workspace needed at that point in the code,
519*       as well as the preferred amount for good performance.
520*       NB refers to the optimal block size for the immediately
521*       following subroutine, as returned by ILAENV.
522*
523      MINWRK = 1
524      IF( INFO.EQ.0 .AND. LWORK.GE.1 ) THEN
525         MINWRK = MAX( 1, 8*NMAX, NMAX*( NMAX+1 ) )
526         MAXWRK = 7*NMAX + NMAX*ILAENV( 1, 'SGEQRF', ' ', NMAX, 1, NMAX,
527     $            0 )
528         MAXWRK = MAX( MAXWRK, NMAX*( NMAX+1 ) )
529         WORK( 1 ) = MAXWRK
530      END IF
531*
532      IF( LWORK.LT.MINWRK )
533     $   INFO = -25
534*
535      IF( INFO.NE.0 ) THEN
536         CALL XERBLA( 'SDRGEV', -INFO )
537         RETURN
538      END IF
539*
540*     Quick return if possible
541*
542      IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
543     $   RETURN
544*
545      SAFMIN = SLAMCH( 'Safe minimum' )
546      ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
547      SAFMIN = SAFMIN / ULP
548      SAFMAX = ONE / SAFMIN
549      CALL SLABAD( SAFMIN, SAFMAX )
550      ULPINV = ONE / ULP
551*
552*     The values RMAGN(2:3) depend on N, see below.
553*
554      RMAGN( 0 ) = ZERO
555      RMAGN( 1 ) = ONE
556*
557*     Loop over sizes, types
558*
559      NTESTT = 0
560      NERRS = 0
561      NMATS = 0
562*
563      DO 220 JSIZE = 1, NSIZES
564         N = NN( JSIZE )
565         N1 = MAX( 1, N )
566         RMAGN( 2 ) = SAFMAX*ULP / REAL( N1 )
567         RMAGN( 3 ) = SAFMIN*ULPINV*N1
568*
569         IF( NSIZES.NE.1 ) THEN
570            MTYPES = MIN( MAXTYP, NTYPES )
571         ELSE
572            MTYPES = MIN( MAXTYP+1, NTYPES )
573         END IF
574*
575         DO 210 JTYPE = 1, MTYPES
576            IF( .NOT.DOTYPE( JTYPE ) )
577     $         GO TO 210
578            NMATS = NMATS + 1
579*
580*           Save ISEED in case of an error.
581*
582            DO 20 J = 1, 4
583               IOLDSD( J ) = ISEED( J )
584   20       CONTINUE
585*
586*           Generate test matrices A and B
587*
588*           Description of control parameters:
589*
590*           KCLASS: =1 means w/o rotation, =2 means w/ rotation,
591*                   =3 means random.
592*           KATYPE: the "type" to be passed to SLATM4 for computing A.
593*           KAZERO: the pattern of zeros on the diagonal for A:
594*                   =1: ( xxx ), =2: (0, xxx ) =3: ( 0, 0, xxx, 0 ),
595*                   =4: ( 0, xxx, 0, 0 ), =5: ( 0, 0, 1, xxx, 0 ),
596*                   =6: ( 0, 1, 0, xxx, 0 ).  (xxx means a string of
597*                   non-zero entries.)
598*           KAMAGN: the magnitude of the matrix: =0: zero, =1: O(1),
599*                   =2: large, =3: small.
600*           IASIGN: 1 if the diagonal elements of A are to be
601*                   multiplied by a random magnitude 1 number, =2 if
602*                   randomly chosen diagonal blocks are to be rotated
603*                   to form 2x2 blocks.
604*           KBTYPE, KBZERO, KBMAGN, IBSIGN: the same, but for B.
605*           KTRIAN: =0: don't fill in the upper triangle, =1: do.
606*           KZ1, KZ2, KADD: used to implement KAZERO and KBZERO.
607*           RMAGN: used to implement KAMAGN and KBMAGN.
608*
609            IF( MTYPES.GT.MAXTYP )
610     $         GO TO 100
611            IERR = 0
612            IF( KCLASS( JTYPE ).LT.3 ) THEN
613*
614*              Generate A (w/o rotation)
615*
616               IF( ABS( KATYPE( JTYPE ) ).EQ.3 ) THEN
617                  IN = 2*( ( N-1 ) / 2 ) + 1
618                  IF( IN.NE.N )
619     $               CALL SLASET( 'Full', N, N, ZERO, ZERO, A, LDA )
620               ELSE
621                  IN = N
622               END IF
623               CALL SLATM4( KATYPE( JTYPE ), IN, KZ1( KAZERO( JTYPE ) ),
624     $                      KZ2( KAZERO( JTYPE ) ), IASIGN( JTYPE ),
625     $                      RMAGN( KAMAGN( JTYPE ) ), ULP,
626     $                      RMAGN( KTRIAN( JTYPE )*KAMAGN( JTYPE ) ), 2,
627     $                      ISEED, A, LDA )
628               IADD = KADD( KAZERO( JTYPE ) )
629               IF( IADD.GT.0 .AND. IADD.LE.N )
630     $            A( IADD, IADD ) = ONE
631*
632*              Generate B (w/o rotation)
633*
634               IF( ABS( KBTYPE( JTYPE ) ).EQ.3 ) THEN
635                  IN = 2*( ( N-1 ) / 2 ) + 1
636                  IF( IN.NE.N )
637     $               CALL SLASET( 'Full', N, N, ZERO, ZERO, B, LDA )
638               ELSE
639                  IN = N
640               END IF
641               CALL SLATM4( KBTYPE( JTYPE ), IN, KZ1( KBZERO( JTYPE ) ),
642     $                      KZ2( KBZERO( JTYPE ) ), IBSIGN( JTYPE ),
643     $                      RMAGN( KBMAGN( JTYPE ) ), ONE,
644     $                      RMAGN( KTRIAN( JTYPE )*KBMAGN( JTYPE ) ), 2,
645     $                      ISEED, B, LDA )
646               IADD = KADD( KBZERO( JTYPE ) )
647               IF( IADD.NE.0 .AND. IADD.LE.N )
648     $            B( IADD, IADD ) = ONE
649*
650               IF( KCLASS( JTYPE ).EQ.2 .AND. N.GT.0 ) THEN
651*
652*                 Include rotations
653*
654*                 Generate Q, Z as Householder transformations times
655*                 a diagonal matrix.
656*
657                  DO 40 JC = 1, N - 1
658                     DO 30 JR = JC, N
659                        Q( JR, JC ) = SLARND( 3, ISEED )
660                        Z( JR, JC ) = SLARND( 3, ISEED )
661   30                CONTINUE
662                     CALL SLARFG( N+1-JC, Q( JC, JC ), Q( JC+1, JC ), 1,
663     $                            WORK( JC ) )
664                     WORK( 2*N+JC ) = SIGN( ONE, Q( JC, JC ) )
665                     Q( JC, JC ) = ONE
666                     CALL SLARFG( N+1-JC, Z( JC, JC ), Z( JC+1, JC ), 1,
667     $                            WORK( N+JC ) )
668                     WORK( 3*N+JC ) = SIGN( ONE, Z( JC, JC ) )
669                     Z( JC, JC ) = ONE
670   40             CONTINUE
671                  Q( N, N ) = ONE
672                  WORK( N ) = ZERO
673                  WORK( 3*N ) = SIGN( ONE, SLARND( 2, ISEED ) )
674                  Z( N, N ) = ONE
675                  WORK( 2*N ) = ZERO
676                  WORK( 4*N ) = SIGN( ONE, SLARND( 2, ISEED ) )
677*
678*                 Apply the diagonal matrices
679*
680                  DO 60 JC = 1, N
681                     DO 50 JR = 1, N
682                        A( JR, JC ) = WORK( 2*N+JR )*WORK( 3*N+JC )*
683     $                                A( JR, JC )
684                        B( JR, JC ) = WORK( 2*N+JR )*WORK( 3*N+JC )*
685     $                                B( JR, JC )
686   50                CONTINUE
687   60             CONTINUE
688                  CALL SORM2R( 'L', 'N', N, N, N-1, Q, LDQ, WORK, A,
689     $                         LDA, WORK( 2*N+1 ), IERR )
690                  IF( IERR.NE.0 )
691     $               GO TO 90
692                  CALL SORM2R( 'R', 'T', N, N, N-1, Z, LDQ, WORK( N+1 ),
693     $                         A, LDA, WORK( 2*N+1 ), IERR )
694                  IF( IERR.NE.0 )
695     $               GO TO 90
696                  CALL SORM2R( 'L', 'N', N, N, N-1, Q, LDQ, WORK, B,
697     $                         LDA, WORK( 2*N+1 ), IERR )
698                  IF( IERR.NE.0 )
699     $               GO TO 90
700                  CALL SORM2R( 'R', 'T', N, N, N-1, Z, LDQ, WORK( N+1 ),
701     $                         B, LDA, WORK( 2*N+1 ), IERR )
702                  IF( IERR.NE.0 )
703     $               GO TO 90
704               END IF
705            ELSE
706*
707*              Random matrices
708*
709               DO 80 JC = 1, N
710                  DO 70 JR = 1, N
711                     A( JR, JC ) = RMAGN( KAMAGN( JTYPE ) )*
712     $                             SLARND( 2, ISEED )
713                     B( JR, JC ) = RMAGN( KBMAGN( JTYPE ) )*
714     $                             SLARND( 2, ISEED )
715   70             CONTINUE
716   80          CONTINUE
717            END IF
718*
719   90       CONTINUE
720*
721            IF( IERR.NE.0 ) THEN
722               WRITE( NOUNIT, FMT = 9999 )'Generator', IERR, N, JTYPE,
723     $            IOLDSD
724               INFO = ABS( IERR )
725               RETURN
726            END IF
727*
728  100       CONTINUE
729*
730            DO 110 I = 1, 7
731               RESULT( I ) = -ONE
732  110       CONTINUE
733*
734*           Call SGGEV to compute eigenvalues and eigenvectors.
735*
736            CALL SLACPY( ' ', N, N, A, LDA, S, LDA )
737            CALL SLACPY( ' ', N, N, B, LDA, T, LDA )
738            CALL SGGEV( 'V', 'V', N, S, LDA, T, LDA, ALPHAR, ALPHAI,
739     $                  BETA, Q, LDQ, Z, LDQ, WORK, LWORK, IERR )
740            IF( IERR.NE.0 .AND. IERR.NE.N+1 ) THEN
741               RESULT( 1 ) = ULPINV
742               WRITE( NOUNIT, FMT = 9999 )'SGGEV1', IERR, N, JTYPE,
743     $            IOLDSD
744               INFO = ABS( IERR )
745               GO TO 190
746            END IF
747*
748*           Do the tests (1) and (2)
749*
750            CALL SGET52( .TRUE., N, A, LDA, B, LDA, Q, LDQ, ALPHAR,
751     $                   ALPHAI, BETA, WORK, RESULT( 1 ) )
752            IF( RESULT( 2 ).GT.THRESH ) THEN
753               WRITE( NOUNIT, FMT = 9998 )'Left', 'SGGEV1',
754     $            RESULT( 2 ), N, JTYPE, IOLDSD
755            END IF
756*
757*           Do the tests (3) and (4)
758*
759            CALL SGET52( .FALSE., N, A, LDA, B, LDA, Z, LDQ, ALPHAR,
760     $                   ALPHAI, BETA, WORK, RESULT( 3 ) )
761            IF( RESULT( 4 ).GT.THRESH ) THEN
762               WRITE( NOUNIT, FMT = 9998 )'Right', 'SGGEV1',
763     $            RESULT( 4 ), N, JTYPE, IOLDSD
764            END IF
765*
766*           Do the test (5)
767*
768            CALL SLACPY( ' ', N, N, A, LDA, S, LDA )
769            CALL SLACPY( ' ', N, N, B, LDA, T, LDA )
770            CALL SGGEV( 'N', 'N', N, S, LDA, T, LDA, ALPHR1, ALPHI1,
771     $                  BETA1, Q, LDQ, Z, LDQ, WORK, LWORK, IERR )
772            IF( IERR.NE.0 .AND. IERR.NE.N+1 ) THEN
773               RESULT( 1 ) = ULPINV
774               WRITE( NOUNIT, FMT = 9999 )'SGGEV2', IERR, N, JTYPE,
775     $            IOLDSD
776               INFO = ABS( IERR )
777               GO TO 190
778            END IF
779*
780            DO 120 J = 1, N
781               IF( ALPHAR( J ).NE.ALPHR1( J ) .OR. ALPHAI( J ).NE.
782     $             ALPHI1( J ) .OR. BETA( J ).NE.BETA1( J ) )
783     $             RESULT( 5 ) = ULPINV
784  120       CONTINUE
785*
786*           Do the test (6): Compute eigenvalues and left eigenvectors,
787*           and test them
788*
789            CALL SLACPY( ' ', N, N, A, LDA, S, LDA )
790            CALL SLACPY( ' ', N, N, B, LDA, T, LDA )
791            CALL SGGEV( 'V', 'N', N, S, LDA, T, LDA, ALPHR1, ALPHI1,
792     $                  BETA1, QE, LDQE, Z, LDQ, WORK, LWORK, IERR )
793            IF( IERR.NE.0 .AND. IERR.NE.N+1 ) THEN
794               RESULT( 1 ) = ULPINV
795               WRITE( NOUNIT, FMT = 9999 )'SGGEV3', IERR, N, JTYPE,
796     $            IOLDSD
797               INFO = ABS( IERR )
798               GO TO 190
799            END IF
800*
801            DO 130 J = 1, N
802               IF( ALPHAR( J ).NE.ALPHR1( J ) .OR. ALPHAI( J ).NE.
803     $             ALPHI1( J ) .OR. BETA( J ).NE.BETA1( J ) )
804     $             RESULT( 6 ) = ULPINV
805  130       CONTINUE
806*
807            DO 150 J = 1, N
808               DO 140 JC = 1, N
809                  IF( Q( J, JC ).NE.QE( J, JC ) )
810     $               RESULT( 6 ) = ULPINV
811  140          CONTINUE
812  150       CONTINUE
813*
814*           DO the test (7): Compute eigenvalues and right eigenvectors,
815*           and test them
816*
817            CALL SLACPY( ' ', N, N, A, LDA, S, LDA )
818            CALL SLACPY( ' ', N, N, B, LDA, T, LDA )
819            CALL SGGEV( 'N', 'V', N, S, LDA, T, LDA, ALPHR1, ALPHI1,
820     $                  BETA1, Q, LDQ, QE, LDQE, WORK, LWORK, IERR )
821            IF( IERR.NE.0 .AND. IERR.NE.N+1 ) THEN
822               RESULT( 1 ) = ULPINV
823               WRITE( NOUNIT, FMT = 9999 )'SGGEV4', IERR, N, JTYPE,
824     $            IOLDSD
825               INFO = ABS( IERR )
826               GO TO 190
827            END IF
828*
829            DO 160 J = 1, N
830               IF( ALPHAR( J ).NE.ALPHR1( J ) .OR. ALPHAI( J ).NE.
831     $             ALPHI1( J ) .OR. BETA( J ).NE.BETA1( J ) )
832     $             RESULT( 7 ) = ULPINV
833  160       CONTINUE
834*
835            DO 180 J = 1, N
836               DO 170 JC = 1, N
837                  IF( Z( J, JC ).NE.QE( J, JC ) )
838     $               RESULT( 7 ) = ULPINV
839  170          CONTINUE
840  180       CONTINUE
841*
842*           End of Loop -- Check for RESULT(j) > THRESH
843*
844  190       CONTINUE
845*
846            NTESTT = NTESTT + 7
847*
848*           Print out tests which fail.
849*
850            DO 200 JR = 1, 7
851               IF( RESULT( JR ).GE.THRESH ) THEN
852*
853*                 If this is the first test to fail,
854*                 print a header to the data file.
855*
856                  IF( NERRS.EQ.0 ) THEN
857                     WRITE( NOUNIT, FMT = 9997 )'SGV'
858*
859*                    Matrix types
860*
861                     WRITE( NOUNIT, FMT = 9996 )
862                     WRITE( NOUNIT, FMT = 9995 )
863                     WRITE( NOUNIT, FMT = 9994 )'Orthogonal'
864*
865*                    Tests performed
866*
867                     WRITE( NOUNIT, FMT = 9993 )
868*
869                  END IF
870                  NERRS = NERRS + 1
871                  IF( RESULT( JR ).LT.10000.0 ) THEN
872                     WRITE( NOUNIT, FMT = 9992 )N, JTYPE, IOLDSD, JR,
873     $                  RESULT( JR )
874                  ELSE
875                     WRITE( NOUNIT, FMT = 9991 )N, JTYPE, IOLDSD, JR,
876     $                  RESULT( JR )
877                  END IF
878               END IF
879  200       CONTINUE
880*
881  210    CONTINUE
882  220 CONTINUE
883*
884*     Summary
885*
886      CALL ALASVM( 'SGV', NOUNIT, NERRS, NTESTT, 0 )
887*
888      WORK( 1 ) = MAXWRK
889*
890      RETURN
891*
892 9999 FORMAT( ' SDRGEV: ', A, ' returned INFO=', I6, '.', / 3X, 'N=',
893     $      I6, ', JTYPE=', I6, ', ISEED=(', 4( I4, ',' ), I5, ')' )
894*
895 9998 FORMAT( ' SDRGEV: ', A, ' Eigenvectors from ', A, ' incorrectly ',
896     $      'normalized.', / ' Bits of error=', 0P, G10.3, ',', 3X,
897     $      'N=', I4, ', JTYPE=', I3, ', ISEED=(', 4( I4, ',' ), I5,
898     $      ')' )
899*
900 9997 FORMAT( / 1X, A3, ' -- Real Generalized eigenvalue problem driver'
901     $       )
902*
903 9996 FORMAT( ' Matrix types (see SDRGEV for details): ' )
904*
905 9995 FORMAT( ' Special Matrices:', 23X,
906     $      '(J''=transposed Jordan block)',
907     $      / '   1=(0,0)  2=(I,0)  3=(0,I)  4=(I,I)  5=(J'',J'')  ',
908     $      '6=(diag(J'',I), diag(I,J''))', / ' Diagonal Matrices:  ( ',
909     $      'D=diag(0,1,2,...) )', / '   7=(D,I)   9=(large*D, small*I',
910     $      ')  11=(large*I, small*D)  13=(large*D, large*I)', /
911     $      '   8=(I,D)  10=(small*D, large*I)  12=(small*I, large*D) ',
912     $      ' 14=(small*D, small*I)', / '  15=(D, reversed D)' )
913 9994 FORMAT( ' Matrices Rotated by Random ', A, ' Matrices U, V:',
914     $      / '  16=Transposed Jordan Blocks             19=geometric ',
915     $      'alpha, beta=0,1', / '  17=arithm. alpha&beta             ',
916     $      '      20=arithmetic alpha, beta=0,1', / '  18=clustered ',
917     $      'alpha, beta=0,1            21=random alpha, beta=0,1',
918     $      / ' Large & Small Matrices:', / '  22=(large, small)   ',
919     $      '23=(small,large)    24=(small,small)    25=(large,large)',
920     $      / '  26=random O(1) matrices.' )
921*
922 9993 FORMAT( / ' Tests performed:    ',
923     $      / ' 1 = max | ( b A - a B )''*l | / const.,',
924     $      / ' 2 = | |VR(i)| - 1 | / ulp,',
925     $      / ' 3 = max | ( b A - a B )*r | / const.',
926     $      / ' 4 = | |VL(i)| - 1 | / ulp,',
927     $      / ' 5 = 0 if W same no matter if r or l computed,',
928     $      / ' 6 = 0 if l same no matter if l computed,',
929     $      / ' 7 = 0 if r same no matter if r computed,', / 1X )
930 9992 FORMAT( ' Matrix order=', I5, ', type=', I2, ', seed=',
931     $      4( I4, ',' ), ' result ', I2, ' is', 0P, F8.2 )
932 9991 FORMAT( ' Matrix order=', I5, ', type=', I2, ', seed=',
933     $      4( I4, ',' ), ' result ', I2, ' is', 1P, E10.3 )
934*
935*     End of SDRGEV
936*
937      END
938