1*> \brief \b ZHET22
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*  Definition:
9*  ===========
10*
11*       SUBROUTINE ZHET22( ITYPE, UPLO, N, M, KBAND, A, LDA, D, E, U, LDU,
12*                          V, LDV, TAU, WORK, RWORK, RESULT )
13*
14*       .. Scalar Arguments ..
15*       CHARACTER          UPLO
16*       INTEGER            ITYPE, KBAND, LDA, LDU, LDV, M, N
17*       ..
18*       .. Array Arguments ..
19*       DOUBLE PRECISION   D( * ), E( * ), RESULT( 2 ), RWORK( * )
20*       COMPLEX*16         A( LDA, * ), TAU( * ), U( LDU, * ),
21*      $                   V( LDV, * ), WORK( * )
22*       ..
23*
24*
25*> \par Purpose:
26*  =============
27*>
28*> \verbatim
29*>
30*>      ZHET22  generally checks a decomposition of the form
31*>
32*>              A U = U S
33*>
34*>      where A is complex Hermitian, the columns of U are orthonormal,
35*>      and S is diagonal (if KBAND=0) or symmetric tridiagonal (if
36*>      KBAND=1).  If ITYPE=1, then U is represented as a dense matrix,
37*>      otherwise the U is expressed as a product of Householder
38*>      transformations, whose vectors are stored in the array "V" and
39*>      whose scaling constants are in "TAU"; we shall use the letter
40*>      "V" to refer to the product of Householder transformations
41*>      (which should be equal to U).
42*>
43*>      Specifically, if ITYPE=1, then:
44*>
45*>              RESULT(1) = | U**H A U - S | / ( |A| m ulp ) and
46*>              RESULT(2) = | I - U**H U | / ( m ulp )
47*> \endverbatim
48*
49*  Arguments:
50*  ==========
51*
52*> \verbatim
53*>  ITYPE   INTEGER
54*>          Specifies the type of tests to be performed.
55*>          1: U expressed as a dense orthogonal matrix:
56*>             RESULT(1) = | A - U S U**H | / ( |A| n ulp )   *and
57*>             RESULT(2) = | I - U U**H | / ( n ulp )
58*>
59*>  UPLO    CHARACTER
60*>          If UPLO='U', the upper triangle of A will be used and the
61*>          (strictly) lower triangle will not be referenced.  If
62*>          UPLO='L', the lower triangle of A will be used and the
63*>          (strictly) upper triangle will not be referenced.
64*>          Not modified.
65*>
66*>  N       INTEGER
67*>          The size of the matrix.  If it is zero, ZHET22 does nothing.
68*>          It must be at least zero.
69*>          Not modified.
70*>
71*>  M       INTEGER
72*>          The number of columns of U.  If it is zero, ZHET22 does
73*>          nothing.  It must be at least zero.
74*>          Not modified.
75*>
76*>  KBAND   INTEGER
77*>          The bandwidth of the matrix.  It may only be zero or one.
78*>          If zero, then S is diagonal, and E is not referenced.  If
79*>          one, then S is symmetric tri-diagonal.
80*>          Not modified.
81*>
82*>  A       COMPLEX*16 array, dimension (LDA , N)
83*>          The original (unfactored) matrix.  It is assumed to be
84*>          symmetric, and only the upper (UPLO='U') or only the lower
85*>          (UPLO='L') will be referenced.
86*>          Not modified.
87*>
88*>  LDA     INTEGER
89*>          The leading dimension of A.  It must be at least 1
90*>          and at least N.
91*>          Not modified.
92*>
93*>  D       DOUBLE PRECISION array, dimension (N)
94*>          The diagonal of the (symmetric tri-) diagonal matrix.
95*>          Not modified.
96*>
97*>  E       DOUBLE PRECISION array, dimension (N)
98*>          The off-diagonal of the (symmetric tri-) diagonal matrix.
99*>          E(1) is ignored, E(2) is the (1,2) and (2,1) element, etc.
100*>          Not referenced if KBAND=0.
101*>          Not modified.
102*>
103*>  U       COMPLEX*16 array, dimension (LDU, N)
104*>          If ITYPE=1, this contains the orthogonal matrix in
105*>          the decomposition, expressed as a dense matrix.
106*>          Not modified.
107*>
108*>  LDU     INTEGER
109*>          The leading dimension of U.  LDU must be at least N and
110*>          at least 1.
111*>          Not modified.
112*>
113*>  V       COMPLEX*16 array, dimension (LDV, N)
114*>          If ITYPE=2 or 3, the lower triangle of this array contains
115*>          the Householder vectors used to describe the orthogonal
116*>          matrix in the decomposition.  If ITYPE=1, then it is not
117*>          referenced.
118*>          Not modified.
119*>
120*>  LDV     INTEGER
121*>          The leading dimension of V.  LDV must be at least N and
122*>          at least 1.
123*>          Not modified.
124*>
125*>  TAU     COMPLEX*16 array, dimension (N)
126*>          If ITYPE >= 2, then TAU(j) is the scalar factor of
127*>          v(j) v(j)**H in the Householder transformation H(j) of
128*>          the product  U = H(1)...H(n-2)
129*>          If ITYPE < 2, then TAU is not referenced.
130*>          Not modified.
131*>
132*>  WORK    COMPLEX*16 array, dimension (2*N**2)
133*>          Workspace.
134*>          Modified.
135*>
136*>  RWORK   DOUBLE PRECISION array, dimension (N)
137*>          Workspace.
138*>          Modified.
139*>
140*>  RESULT  DOUBLE PRECISION array, dimension (2)
141*>          The values computed by the two tests described above.  The
142*>          values are currently limited to 1/ulp, to avoid overflow.
143*>          RESULT(1) is always modified.  RESULT(2) is modified only
144*>          if LDU is at least N.
145*>          Modified.
146*> \endverbatim
147*
148*  Authors:
149*  ========
150*
151*> \author Univ. of Tennessee
152*> \author Univ. of California Berkeley
153*> \author Univ. of Colorado Denver
154*> \author NAG Ltd.
155*
156*> \ingroup complex16_eig
157*
158*  =====================================================================
159      SUBROUTINE ZHET22( ITYPE, UPLO, N, M, KBAND, A, LDA, D, E, U, LDU,
160     $                   V, LDV, TAU, WORK, RWORK, RESULT )
161*
162*  -- LAPACK test routine --
163*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
164*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
165*
166*     .. Scalar Arguments ..
167      CHARACTER          UPLO
168      INTEGER            ITYPE, KBAND, LDA, LDU, LDV, M, N
169*     ..
170*     .. Array Arguments ..
171      DOUBLE PRECISION   D( * ), E( * ), RESULT( 2 ), RWORK( * )
172      COMPLEX*16         A( LDA, * ), TAU( * ), U( LDU, * ),
173     $                   V( LDV, * ), WORK( * )
174*     ..
175*
176*  =====================================================================
177*
178*     .. Parameters ..
179      DOUBLE PRECISION   ZERO, ONE
180      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
181      COMPLEX*16         CZERO, CONE
182      PARAMETER          ( CZERO = ( 0.0D0, 0.0D0 ),
183     $                   CONE = ( 1.0D0, 0.0D0 ) )
184*     ..
185*     .. Local Scalars ..
186      INTEGER            J, JJ, JJ1, JJ2, NN, NNP1
187      DOUBLE PRECISION   ANORM, ULP, UNFL, WNORM
188*     ..
189*     .. External Functions ..
190      DOUBLE PRECISION   DLAMCH, ZLANHE
191      EXTERNAL           DLAMCH, ZLANHE
192*     ..
193*     .. External Subroutines ..
194      EXTERNAL           ZGEMM, ZHEMM, ZUNT01
195*     ..
196*     .. Intrinsic Functions ..
197      INTRINSIC          DBLE, MAX, MIN
198*     ..
199*     .. Executable Statements ..
200*
201      RESULT( 1 ) = ZERO
202      RESULT( 2 ) = ZERO
203      IF( N.LE.0 .OR. M.LE.0 )
204     $   RETURN
205*
206      UNFL = DLAMCH( 'Safe minimum' )
207      ULP = DLAMCH( 'Precision' )
208*
209*     Do Test 1
210*
211*     Norm of A:
212*
213      ANORM = MAX( ZLANHE( '1', UPLO, N, A, LDA, RWORK ), UNFL )
214*
215*     Compute error matrix:
216*
217*     ITYPE=1: error = U**H A U - S
218*
219      CALL ZHEMM( 'L', UPLO, N, M, CONE, A, LDA, U, LDU, CZERO, WORK,
220     $            N )
221      NN = N*N
222      NNP1 = NN + 1
223      CALL ZGEMM( 'C', 'N', M, M, N, CONE, U, LDU, WORK, N, CZERO,
224     $            WORK( NNP1 ), N )
225      DO 10 J = 1, M
226         JJ = NN + ( J-1 )*N + J
227         WORK( JJ ) = WORK( JJ ) - D( J )
228   10 CONTINUE
229      IF( KBAND.EQ.1 .AND. N.GT.1 ) THEN
230         DO 20 J = 2, M
231            JJ1 = NN + ( J-1 )*N + J - 1
232            JJ2 = NN + ( J-2 )*N + J
233            WORK( JJ1 ) = WORK( JJ1 ) - E( J-1 )
234            WORK( JJ2 ) = WORK( JJ2 ) - E( J-1 )
235   20    CONTINUE
236      END IF
237      WNORM = ZLANHE( '1', UPLO, M, WORK( NNP1 ), N, RWORK )
238*
239      IF( ANORM.GT.WNORM ) THEN
240         RESULT( 1 ) = ( WNORM / ANORM ) / ( M*ULP )
241      ELSE
242         IF( ANORM.LT.ONE ) THEN
243            RESULT( 1 ) = ( MIN( WNORM, M*ANORM ) / ANORM ) / ( M*ULP )
244         ELSE
245            RESULT( 1 ) = MIN( WNORM / ANORM, DBLE( M ) ) / ( M*ULP )
246         END IF
247      END IF
248*
249*     Do Test 2
250*
251*     Compute  U**H U - I
252*
253      IF( ITYPE.EQ.1 )
254     $   CALL ZUNT01( 'Columns', N, M, U, LDU, WORK, 2*N*N, RWORK,
255     $                RESULT( 2 ) )
256*
257      RETURN
258*
259*     End of ZHET22
260*
261      END
262