1*> \brief <b> DGELSX solves overdetermined or underdetermined systems for GE matrices</b> 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download DGELSX + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgelsx.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgelsx.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgelsx.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE DGELSX( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK, 22* WORK, INFO ) 23* 24* .. Scalar Arguments .. 25* INTEGER INFO, LDA, LDB, M, N, NRHS, RANK 26* DOUBLE PRECISION RCOND 27* .. 28* .. Array Arguments .. 29* INTEGER JPVT( * ) 30* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * ) 31* .. 32* 33* 34*> \par Purpose: 35* ============= 36*> 37*> \verbatim 38*> 39*> This routine is deprecated and has been replaced by routine DGELSY. 40*> 41*> DGELSX computes the minimum-norm solution to a real linear least 42*> squares problem: 43*> minimize || A * X - B || 44*> using a complete orthogonal factorization of A. A is an M-by-N 45*> matrix which may be rank-deficient. 46*> 47*> Several right hand side vectors b and solution vectors x can be 48*> handled in a single call; they are stored as the columns of the 49*> M-by-NRHS right hand side matrix B and the N-by-NRHS solution 50*> matrix X. 51*> 52*> The routine first computes a QR factorization with column pivoting: 53*> A * P = Q * [ R11 R12 ] 54*> [ 0 R22 ] 55*> with R11 defined as the largest leading submatrix whose estimated 56*> condition number is less than 1/RCOND. The order of R11, RANK, 57*> is the effective rank of A. 58*> 59*> Then, R22 is considered to be negligible, and R12 is annihilated 60*> by orthogonal transformations from the right, arriving at the 61*> complete orthogonal factorization: 62*> A * P = Q * [ T11 0 ] * Z 63*> [ 0 0 ] 64*> The minimum-norm solution is then 65*> X = P * Z**T [ inv(T11)*Q1**T*B ] 66*> [ 0 ] 67*> where Q1 consists of the first RANK columns of Q. 68*> \endverbatim 69* 70* Arguments: 71* ========== 72* 73*> \param[in] M 74*> \verbatim 75*> M is INTEGER 76*> The number of rows of the matrix A. M >= 0. 77*> \endverbatim 78*> 79*> \param[in] N 80*> \verbatim 81*> N is INTEGER 82*> The number of columns of the matrix A. N >= 0. 83*> \endverbatim 84*> 85*> \param[in] NRHS 86*> \verbatim 87*> NRHS is INTEGER 88*> The number of right hand sides, i.e., the number of 89*> columns of matrices B and X. NRHS >= 0. 90*> \endverbatim 91*> 92*> \param[in,out] A 93*> \verbatim 94*> A is DOUBLE PRECISION array, dimension (LDA,N) 95*> On entry, the M-by-N matrix A. 96*> On exit, A has been overwritten by details of its 97*> complete orthogonal factorization. 98*> \endverbatim 99*> 100*> \param[in] LDA 101*> \verbatim 102*> LDA is INTEGER 103*> The leading dimension of the array A. LDA >= max(1,M). 104*> \endverbatim 105*> 106*> \param[in,out] B 107*> \verbatim 108*> B is DOUBLE PRECISION array, dimension (LDB,NRHS) 109*> On entry, the M-by-NRHS right hand side matrix B. 110*> On exit, the N-by-NRHS solution matrix X. 111*> If m >= n and RANK = n, the residual sum-of-squares for 112*> the solution in the i-th column is given by the sum of 113*> squares of elements N+1:M in that column. 114*> \endverbatim 115*> 116*> \param[in] LDB 117*> \verbatim 118*> LDB is INTEGER 119*> The leading dimension of the array B. LDB >= max(1,M,N). 120*> \endverbatim 121*> 122*> \param[in,out] JPVT 123*> \verbatim 124*> JPVT is INTEGER array, dimension (N) 125*> On entry, if JPVT(i) .ne. 0, the i-th column of A is an 126*> initial column, otherwise it is a free column. Before 127*> the QR factorization of A, all initial columns are 128*> permuted to the leading positions; only the remaining 129*> free columns are moved as a result of column pivoting 130*> during the factorization. 131*> On exit, if JPVT(i) = k, then the i-th column of A*P 132*> was the k-th column of A. 133*> \endverbatim 134*> 135*> \param[in] RCOND 136*> \verbatim 137*> RCOND is DOUBLE PRECISION 138*> RCOND is used to determine the effective rank of A, which 139*> is defined as the order of the largest leading triangular 140*> submatrix R11 in the QR factorization with pivoting of A, 141*> whose estimated condition number < 1/RCOND. 142*> \endverbatim 143*> 144*> \param[out] RANK 145*> \verbatim 146*> RANK is INTEGER 147*> The effective rank of A, i.e., the order of the submatrix 148*> R11. This is the same as the order of the submatrix T11 149*> in the complete orthogonal factorization of A. 150*> \endverbatim 151*> 152*> \param[out] WORK 153*> \verbatim 154*> WORK is DOUBLE PRECISION array, dimension 155*> (max( min(M,N)+3*N, 2*min(M,N)+NRHS )), 156*> \endverbatim 157*> 158*> \param[out] INFO 159*> \verbatim 160*> INFO is INTEGER 161*> = 0: successful exit 162*> < 0: if INFO = -i, the i-th argument had an illegal value 163*> \endverbatim 164* 165* Authors: 166* ======== 167* 168*> \author Univ. of Tennessee 169*> \author Univ. of California Berkeley 170*> \author Univ. of Colorado Denver 171*> \author NAG Ltd. 172* 173*> \date November 2011 174* 175*> \ingroup doubleGEsolve 176* 177* ===================================================================== 178 SUBROUTINE DGELSX( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK, 179 $ WORK, INFO ) 180* 181* -- LAPACK driver routine (version 3.4.0) -- 182* -- LAPACK is a software package provided by Univ. of Tennessee, -- 183* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 184* November 2011 185* 186* .. Scalar Arguments .. 187 INTEGER INFO, LDA, LDB, M, N, NRHS, RANK 188 DOUBLE PRECISION RCOND 189* .. 190* .. Array Arguments .. 191 INTEGER JPVT( * ) 192 DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * ) 193* .. 194* 195* ===================================================================== 196* 197* .. Parameters .. 198 INTEGER IMAX, IMIN 199 PARAMETER ( IMAX = 1, IMIN = 2 ) 200 DOUBLE PRECISION ZERO, ONE, DONE, NTDONE 201 PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, DONE = ZERO, 202 $ NTDONE = ONE ) 203* .. 204* .. Local Scalars .. 205 INTEGER I, IASCL, IBSCL, ISMAX, ISMIN, J, K, MN 206 DOUBLE PRECISION ANRM, BIGNUM, BNRM, C1, C2, S1, S2, SMAX, 207 $ SMAXPR, SMIN, SMINPR, SMLNUM, T1, T2 208* .. 209* .. External Functions .. 210 DOUBLE PRECISION DLAMCH, DLANGE 211 EXTERNAL DLAMCH, DLANGE 212* .. 213* .. External Subroutines .. 214 EXTERNAL DGEQPF, DLAIC1, DLASCL, DLASET, DLATZM, DORM2R, 215 $ DTRSM, DTZRQF, XERBLA 216* .. 217* .. Intrinsic Functions .. 218 INTRINSIC ABS, MAX, MIN 219* .. 220* .. Executable Statements .. 221* 222 MN = MIN( M, N ) 223 ISMIN = MN + 1 224 ISMAX = 2*MN + 1 225* 226* Test the input arguments. 227* 228 INFO = 0 229 IF( M.LT.0 ) THEN 230 INFO = -1 231 ELSE IF( N.LT.0 ) THEN 232 INFO = -2 233 ELSE IF( NRHS.LT.0 ) THEN 234 INFO = -3 235 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN 236 INFO = -5 237 ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN 238 INFO = -7 239 END IF 240* 241 IF( INFO.NE.0 ) THEN 242 CALL XERBLA( 'DGELSX', -INFO ) 243 RETURN 244 END IF 245* 246* Quick return if possible 247* 248 IF( MIN( M, N, NRHS ).EQ.0 ) THEN 249 RANK = 0 250 RETURN 251 END IF 252* 253* Get machine parameters 254* 255 SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' ) 256 BIGNUM = ONE / SMLNUM 257 CALL DLABAD( SMLNUM, BIGNUM ) 258* 259* Scale A, B if max elements outside range [SMLNUM,BIGNUM] 260* 261 ANRM = DLANGE( 'M', M, N, A, LDA, WORK ) 262 IASCL = 0 263 IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN 264* 265* Scale matrix norm up to SMLNUM 266* 267 CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO ) 268 IASCL = 1 269 ELSE IF( ANRM.GT.BIGNUM ) THEN 270* 271* Scale matrix norm down to BIGNUM 272* 273 CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO ) 274 IASCL = 2 275 ELSE IF( ANRM.EQ.ZERO ) THEN 276* 277* Matrix all zero. Return zero solution. 278* 279 CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB ) 280 RANK = 0 281 GO TO 100 282 END IF 283* 284 BNRM = DLANGE( 'M', M, NRHS, B, LDB, WORK ) 285 IBSCL = 0 286 IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN 287* 288* Scale matrix norm up to SMLNUM 289* 290 CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO ) 291 IBSCL = 1 292 ELSE IF( BNRM.GT.BIGNUM ) THEN 293* 294* Scale matrix norm down to BIGNUM 295* 296 CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO ) 297 IBSCL = 2 298 END IF 299* 300* Compute QR factorization with column pivoting of A: 301* A * P = Q * R 302* 303 CALL DGEQPF( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ), INFO ) 304* 305* workspace 3*N. Details of Householder rotations stored 306* in WORK(1:MN). 307* 308* Determine RANK using incremental condition estimation 309* 310 WORK( ISMIN ) = ONE 311 WORK( ISMAX ) = ONE 312 SMAX = ABS( A( 1, 1 ) ) 313 SMIN = SMAX 314 IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN 315 RANK = 0 316 CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB ) 317 GO TO 100 318 ELSE 319 RANK = 1 320 END IF 321* 322 10 CONTINUE 323 IF( RANK.LT.MN ) THEN 324 I = RANK + 1 325 CALL DLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ), 326 $ A( I, I ), SMINPR, S1, C1 ) 327 CALL DLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ), 328 $ A( I, I ), SMAXPR, S2, C2 ) 329* 330 IF( SMAXPR*RCOND.LE.SMINPR ) THEN 331 DO 20 I = 1, RANK 332 WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 ) 333 WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 ) 334 20 CONTINUE 335 WORK( ISMIN+RANK ) = C1 336 WORK( ISMAX+RANK ) = C2 337 SMIN = SMINPR 338 SMAX = SMAXPR 339 RANK = RANK + 1 340 GO TO 10 341 END IF 342 END IF 343* 344* Logically partition R = [ R11 R12 ] 345* [ 0 R22 ] 346* where R11 = R(1:RANK,1:RANK) 347* 348* [R11,R12] = [ T11, 0 ] * Y 349* 350 IF( RANK.LT.N ) 351 $ CALL DTZRQF( RANK, N, A, LDA, WORK( MN+1 ), INFO ) 352* 353* Details of Householder rotations stored in WORK(MN+1:2*MN) 354* 355* B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS) 356* 357 CALL DORM2R( 'Left', 'Transpose', M, NRHS, MN, A, LDA, WORK( 1 ), 358 $ B, LDB, WORK( 2*MN+1 ), INFO ) 359* 360* workspace NRHS 361* 362* B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS) 363* 364 CALL DTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK, 365 $ NRHS, ONE, A, LDA, B, LDB ) 366* 367 DO 40 I = RANK + 1, N 368 DO 30 J = 1, NRHS 369 B( I, J ) = ZERO 370 30 CONTINUE 371 40 CONTINUE 372* 373* B(1:N,1:NRHS) := Y**T * B(1:N,1:NRHS) 374* 375 IF( RANK.LT.N ) THEN 376 DO 50 I = 1, RANK 377 CALL DLATZM( 'Left', N-RANK+1, NRHS, A( I, RANK+1 ), LDA, 378 $ WORK( MN+I ), B( I, 1 ), B( RANK+1, 1 ), LDB, 379 $ WORK( 2*MN+1 ) ) 380 50 CONTINUE 381 END IF 382* 383* workspace NRHS 384* 385* B(1:N,1:NRHS) := P * B(1:N,1:NRHS) 386* 387 DO 90 J = 1, NRHS 388 DO 60 I = 1, N 389 WORK( 2*MN+I ) = NTDONE 390 60 CONTINUE 391 DO 80 I = 1, N 392 IF( WORK( 2*MN+I ).EQ.NTDONE ) THEN 393 IF( JPVT( I ).NE.I ) THEN 394 K = I 395 T1 = B( K, J ) 396 T2 = B( JPVT( K ), J ) 397 70 CONTINUE 398 B( JPVT( K ), J ) = T1 399 WORK( 2*MN+K ) = DONE 400 T1 = T2 401 K = JPVT( K ) 402 T2 = B( JPVT( K ), J ) 403 IF( JPVT( K ).NE.I ) 404 $ GO TO 70 405 B( I, J ) = T1 406 WORK( 2*MN+K ) = DONE 407 END IF 408 END IF 409 80 CONTINUE 410 90 CONTINUE 411* 412* Undo scaling 413* 414 IF( IASCL.EQ.1 ) THEN 415 CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO ) 416 CALL DLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA, 417 $ INFO ) 418 ELSE IF( IASCL.EQ.2 ) THEN 419 CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO ) 420 CALL DLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA, 421 $ INFO ) 422 END IF 423 IF( IBSCL.EQ.1 ) THEN 424 CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO ) 425 ELSE IF( IBSCL.EQ.2 ) THEN 426 CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO ) 427 END IF 428* 429 100 CONTINUE 430* 431 RETURN 432* 433* End of DGELSX 434* 435 END 436