1*> \brief \b CHETD2 reduces a Hermitian matrix to real symmetric tridiagonal form by an unitary similarity transformation (unblocked algorithm).
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download CHETD2 + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chetd2.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chetd2.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chetd2.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE CHETD2( UPLO, N, A, LDA, D, E, TAU, INFO )
22*
23*       .. Scalar Arguments ..
24*       CHARACTER          UPLO
25*       INTEGER            INFO, LDA, N
26*       ..
27*       .. Array Arguments ..
28*       REAL               D( * ), E( * )
29*       COMPLEX            A( LDA, * ), TAU( * )
30*       ..
31*
32*
33*> \par Purpose:
34*  =============
35*>
36*> \verbatim
37*>
38*> CHETD2 reduces a complex Hermitian matrix A to real symmetric
39*> tridiagonal form T by a unitary similarity transformation:
40*> Q**H * A * Q = T.
41*> \endverbatim
42*
43*  Arguments:
44*  ==========
45*
46*> \param[in] UPLO
47*> \verbatim
48*>          UPLO is CHARACTER*1
49*>          Specifies whether the upper or lower triangular part of the
50*>          Hermitian matrix A is stored:
51*>          = 'U':  Upper triangular
52*>          = 'L':  Lower triangular
53*> \endverbatim
54*>
55*> \param[in] N
56*> \verbatim
57*>          N is INTEGER
58*>          The order of the matrix A.  N >= 0.
59*> \endverbatim
60*>
61*> \param[in,out] A
62*> \verbatim
63*>          A is COMPLEX array, dimension (LDA,N)
64*>          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
65*>          n-by-n upper triangular part of A contains the upper
66*>          triangular part of the matrix A, and the strictly lower
67*>          triangular part of A is not referenced.  If UPLO = 'L', the
68*>          leading n-by-n lower triangular part of A contains the lower
69*>          triangular part of the matrix A, and the strictly upper
70*>          triangular part of A is not referenced.
71*>          On exit, if UPLO = 'U', the diagonal and first superdiagonal
72*>          of A are overwritten by the corresponding elements of the
73*>          tridiagonal matrix T, and the elements above the first
74*>          superdiagonal, with the array TAU, represent the unitary
75*>          matrix Q as a product of elementary reflectors; if UPLO
76*>          = 'L', the diagonal and first subdiagonal of A are over-
77*>          written by the corresponding elements of the tridiagonal
78*>          matrix T, and the elements below the first subdiagonal, with
79*>          the array TAU, represent the unitary matrix Q as a product
80*>          of elementary reflectors. See Further Details.
81*> \endverbatim
82*>
83*> \param[in] LDA
84*> \verbatim
85*>          LDA is INTEGER
86*>          The leading dimension of the array A.  LDA >= max(1,N).
87*> \endverbatim
88*>
89*> \param[out] D
90*> \verbatim
91*>          D is REAL array, dimension (N)
92*>          The diagonal elements of the tridiagonal matrix T:
93*>          D(i) = A(i,i).
94*> \endverbatim
95*>
96*> \param[out] E
97*> \verbatim
98*>          E is REAL array, dimension (N-1)
99*>          The off-diagonal elements of the tridiagonal matrix T:
100*>          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
101*> \endverbatim
102*>
103*> \param[out] TAU
104*> \verbatim
105*>          TAU is COMPLEX array, dimension (N-1)
106*>          The scalar factors of the elementary reflectors (see Further
107*>          Details).
108*> \endverbatim
109*>
110*> \param[out] INFO
111*> \verbatim
112*>          INFO is INTEGER
113*>          = 0:  successful exit
114*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
115*> \endverbatim
116*
117*  Authors:
118*  ========
119*
120*> \author Univ. of Tennessee
121*> \author Univ. of California Berkeley
122*> \author Univ. of Colorado Denver
123*> \author NAG Ltd.
124*
125*> \date September 2012
126*
127*> \ingroup complexHEcomputational
128*
129*> \par Further Details:
130*  =====================
131*>
132*> \verbatim
133*>
134*>  If UPLO = 'U', the matrix Q is represented as a product of elementary
135*>  reflectors
136*>
137*>     Q = H(n-1) . . . H(2) H(1).
138*>
139*>  Each H(i) has the form
140*>
141*>     H(i) = I - tau * v * v**H
142*>
143*>  where tau is a complex scalar, and v is a complex vector with
144*>  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
145*>  A(1:i-1,i+1), and tau in TAU(i).
146*>
147*>  If UPLO = 'L', the matrix Q is represented as a product of elementary
148*>  reflectors
149*>
150*>     Q = H(1) H(2) . . . H(n-1).
151*>
152*>  Each H(i) has the form
153*>
154*>     H(i) = I - tau * v * v**H
155*>
156*>  where tau is a complex scalar, and v is a complex vector with
157*>  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
158*>  and tau in TAU(i).
159*>
160*>  The contents of A on exit are illustrated by the following examples
161*>  with n = 5:
162*>
163*>  if UPLO = 'U':                       if UPLO = 'L':
164*>
165*>    (  d   e   v2  v3  v4 )              (  d                  )
166*>    (      d   e   v3  v4 )              (  e   d              )
167*>    (          d   e   v4 )              (  v1  e   d          )
168*>    (              d   e  )              (  v1  v2  e   d      )
169*>    (                  d  )              (  v1  v2  v3  e   d  )
170*>
171*>  where d and e denote diagonal and off-diagonal elements of T, and vi
172*>  denotes an element of the vector defining H(i).
173*> \endverbatim
174*>
175*  =====================================================================
176      SUBROUTINE CHETD2( UPLO, N, A, LDA, D, E, TAU, INFO )
177*
178*  -- LAPACK computational routine (version 3.4.2) --
179*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
180*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
181*     September 2012
182*
183*     .. Scalar Arguments ..
184      CHARACTER          UPLO
185      INTEGER            INFO, LDA, N
186*     ..
187*     .. Array Arguments ..
188      REAL               D( * ), E( * )
189      COMPLEX            A( LDA, * ), TAU( * )
190*     ..
191*
192*  =====================================================================
193*
194*     .. Parameters ..
195      COMPLEX            ONE, ZERO, HALF
196      PARAMETER          ( ONE = ( 1.0E+0, 0.0E+0 ),
197     $                   ZERO = ( 0.0E+0, 0.0E+0 ),
198     $                   HALF = ( 0.5E+0, 0.0E+0 ) )
199*     ..
200*     .. Local Scalars ..
201      LOGICAL            UPPER
202      INTEGER            I
203      COMPLEX            ALPHA, TAUI
204*     ..
205*     .. External Subroutines ..
206      EXTERNAL           CAXPY, CHEMV, CHER2, CLARFG, XERBLA
207*     ..
208*     .. External Functions ..
209      LOGICAL            LSAME
210      COMPLEX            CDOTC
211      EXTERNAL           LSAME, CDOTC
212*     ..
213*     .. Intrinsic Functions ..
214      INTRINSIC          MAX, MIN, REAL
215*     ..
216*     .. Executable Statements ..
217*
218*     Test the input parameters
219*
220      INFO = 0
221      UPPER = LSAME( UPLO, 'U' )
222      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
223         INFO = -1
224      ELSE IF( N.LT.0 ) THEN
225         INFO = -2
226      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
227         INFO = -4
228      END IF
229      IF( INFO.NE.0 ) THEN
230         CALL XERBLA( 'CHETD2', -INFO )
231         RETURN
232      END IF
233*
234*     Quick return if possible
235*
236      IF( N.LE.0 )
237     $   RETURN
238*
239      IF( UPPER ) THEN
240*
241*        Reduce the upper triangle of A
242*
243         A( N, N ) = REAL( A( N, N ) )
244         DO 10 I = N - 1, 1, -1
245*
246*           Generate elementary reflector H(i) = I - tau * v * v**H
247*           to annihilate A(1:i-1,i+1)
248*
249            ALPHA = A( I, I+1 )
250            CALL CLARFG( I, ALPHA, A( 1, I+1 ), 1, TAUI )
251            E( I ) = ALPHA
252*
253            IF( TAUI.NE.ZERO ) THEN
254*
255*              Apply H(i) from both sides to A(1:i,1:i)
256*
257               A( I, I+1 ) = ONE
258*
259*              Compute  x := tau * A * v  storing x in TAU(1:i)
260*
261               CALL CHEMV( UPLO, I, TAUI, A, LDA, A( 1, I+1 ), 1, ZERO,
262     $                     TAU, 1 )
263*
264*              Compute  w := x - 1/2 * tau * (x**H * v) * v
265*
266               ALPHA = -HALF*TAUI*CDOTC( I, TAU, 1, A( 1, I+1 ), 1 )
267               CALL CAXPY( I, ALPHA, A( 1, I+1 ), 1, TAU, 1 )
268*
269*              Apply the transformation as a rank-2 update:
270*                 A := A - v * w**H - w * v**H
271*
272               CALL CHER2( UPLO, I, -ONE, A( 1, I+1 ), 1, TAU, 1, A,
273     $                     LDA )
274*
275            ELSE
276               A( I, I ) = REAL( A( I, I ) )
277            END IF
278            A( I, I+1 ) = E( I )
279            D( I+1 ) = A( I+1, I+1 )
280            TAU( I ) = TAUI
281   10    CONTINUE
282         D( 1 ) = A( 1, 1 )
283      ELSE
284*
285*        Reduce the lower triangle of A
286*
287         A( 1, 1 ) = REAL( A( 1, 1 ) )
288         DO 20 I = 1, N - 1
289*
290*           Generate elementary reflector H(i) = I - tau * v * v**H
291*           to annihilate A(i+2:n,i)
292*
293            ALPHA = A( I+1, I )
294            CALL CLARFG( N-I, ALPHA, A( MIN( I+2, N ), I ), 1, TAUI )
295            E( I ) = ALPHA
296*
297            IF( TAUI.NE.ZERO ) THEN
298*
299*              Apply H(i) from both sides to A(i+1:n,i+1:n)
300*
301               A( I+1, I ) = ONE
302*
303*              Compute  x := tau * A * v  storing y in TAU(i:n-1)
304*
305               CALL CHEMV( UPLO, N-I, TAUI, A( I+1, I+1 ), LDA,
306     $                     A( I+1, I ), 1, ZERO, TAU( I ), 1 )
307*
308*              Compute  w := x - 1/2 * tau * (x**H * v) * v
309*
310               ALPHA = -HALF*TAUI*CDOTC( N-I, TAU( I ), 1, A( I+1, I ),
311     $                 1 )
312               CALL CAXPY( N-I, ALPHA, A( I+1, I ), 1, TAU( I ), 1 )
313*
314*              Apply the transformation as a rank-2 update:
315*                 A := A - v * w**H - w * v**H
316*
317               CALL CHER2( UPLO, N-I, -ONE, A( I+1, I ), 1, TAU( I ), 1,
318     $                     A( I+1, I+1 ), LDA )
319*
320            ELSE
321               A( I+1, I+1 ) = REAL( A( I+1, I+1 ) )
322            END IF
323            A( I+1, I ) = E( I )
324            D( I ) = A( I, I )
325            TAU( I ) = TAUI
326   20    CONTINUE
327         D( N ) = A( N, N )
328      END IF
329*
330      RETURN
331*
332*     End of CHETD2
333*
334      END
335