1*> \brief \b CLANSP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric matrix supplied in packed form. 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download CLANSP + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clansp.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clansp.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clansp.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* REAL FUNCTION CLANSP( NORM, UPLO, N, AP, WORK ) 22* 23* .. Scalar Arguments .. 24* CHARACTER NORM, UPLO 25* INTEGER N 26* .. 27* .. Array Arguments .. 28* REAL WORK( * ) 29* COMPLEX AP( * ) 30* .. 31* 32* 33*> \par Purpose: 34* ============= 35*> 36*> \verbatim 37*> 38*> CLANSP returns the value of the one norm, or the Frobenius norm, or 39*> the infinity norm, or the element of largest absolute value of a 40*> complex symmetric matrix A, supplied in packed form. 41*> \endverbatim 42*> 43*> \return CLANSP 44*> \verbatim 45*> 46*> CLANSP = ( max(abs(A(i,j))), NORM = 'M' or 'm' 47*> ( 48*> ( norm1(A), NORM = '1', 'O' or 'o' 49*> ( 50*> ( normI(A), NORM = 'I' or 'i' 51*> ( 52*> ( normF(A), NORM = 'F', 'f', 'E' or 'e' 53*> 54*> where norm1 denotes the one norm of a matrix (maximum column sum), 55*> normI denotes the infinity norm of a matrix (maximum row sum) and 56*> normF denotes the Frobenius norm of a matrix (square root of sum of 57*> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. 58*> \endverbatim 59* 60* Arguments: 61* ========== 62* 63*> \param[in] NORM 64*> \verbatim 65*> NORM is CHARACTER*1 66*> Specifies the value to be returned in CLANSP as described 67*> above. 68*> \endverbatim 69*> 70*> \param[in] UPLO 71*> \verbatim 72*> UPLO is CHARACTER*1 73*> Specifies whether the upper or lower triangular part of the 74*> symmetric matrix A is supplied. 75*> = 'U': Upper triangular part of A is supplied 76*> = 'L': Lower triangular part of A is supplied 77*> \endverbatim 78*> 79*> \param[in] N 80*> \verbatim 81*> N is INTEGER 82*> The order of the matrix A. N >= 0. When N = 0, CLANSP is 83*> set to zero. 84*> \endverbatim 85*> 86*> \param[in] AP 87*> \verbatim 88*> AP is COMPLEX array, dimension (N*(N+1)/2) 89*> The upper or lower triangle of the symmetric matrix A, packed 90*> columnwise in a linear array. The j-th column of A is stored 91*> in the array AP as follows: 92*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; 93*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. 94*> \endverbatim 95*> 96*> \param[out] WORK 97*> \verbatim 98*> WORK is REAL array, dimension (MAX(1,LWORK)), 99*> where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, 100*> WORK is not referenced. 101*> \endverbatim 102* 103* Authors: 104* ======== 105* 106*> \author Univ. of Tennessee 107*> \author Univ. of California Berkeley 108*> \author Univ. of Colorado Denver 109*> \author NAG Ltd. 110* 111*> \date September 2012 112* 113*> \ingroup complexOTHERauxiliary 114* 115* ===================================================================== 116 REAL FUNCTION CLANSP( NORM, UPLO, N, AP, WORK ) 117* 118* -- LAPACK auxiliary routine (version 3.4.2) -- 119* -- LAPACK is a software package provided by Univ. of Tennessee, -- 120* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 121* September 2012 122* 123* .. Scalar Arguments .. 124 CHARACTER NORM, UPLO 125 INTEGER N 126* .. 127* .. Array Arguments .. 128 REAL WORK( * ) 129 COMPLEX AP( * ) 130* .. 131* 132* ===================================================================== 133* 134* .. Parameters .. 135 REAL ONE, ZERO 136 PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) 137* .. 138* .. Local Scalars .. 139 INTEGER I, J, K 140 REAL ABSA, SCALE, SUM, VALUE 141* .. 142* .. External Functions .. 143 LOGICAL LSAME, SISNAN 144 EXTERNAL LSAME, SISNAN 145* .. 146* .. External Subroutines .. 147 EXTERNAL CLASSQ 148* .. 149* .. Intrinsic Functions .. 150 INTRINSIC ABS, AIMAG, REAL, SQRT 151* .. 152* .. Executable Statements .. 153* 154 IF( N.EQ.0 ) THEN 155 VALUE = ZERO 156 ELSE IF( LSAME( NORM, 'M' ) ) THEN 157* 158* Find max(abs(A(i,j))). 159* 160 VALUE = ZERO 161 IF( LSAME( UPLO, 'U' ) ) THEN 162 K = 1 163 DO 20 J = 1, N 164 DO 10 I = K, K + J - 1 165 SUM = ABS( AP( I ) ) 166 IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM 167 10 CONTINUE 168 K = K + J 169 20 CONTINUE 170 ELSE 171 K = 1 172 DO 40 J = 1, N 173 DO 30 I = K, K + N - J 174 SUM = ABS( AP( I ) ) 175 IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM 176 30 CONTINUE 177 K = K + N - J + 1 178 40 CONTINUE 179 END IF 180 ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR. 181 $ ( NORM.EQ.'1' ) ) THEN 182* 183* Find normI(A) ( = norm1(A), since A is symmetric). 184* 185 VALUE = ZERO 186 K = 1 187 IF( LSAME( UPLO, 'U' ) ) THEN 188 DO 60 J = 1, N 189 SUM = ZERO 190 DO 50 I = 1, J - 1 191 ABSA = ABS( AP( K ) ) 192 SUM = SUM + ABSA 193 WORK( I ) = WORK( I ) + ABSA 194 K = K + 1 195 50 CONTINUE 196 WORK( J ) = SUM + ABS( AP( K ) ) 197 K = K + 1 198 60 CONTINUE 199 DO 70 I = 1, N 200 SUM = WORK( I ) 201 IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM 202 70 CONTINUE 203 ELSE 204 DO 80 I = 1, N 205 WORK( I ) = ZERO 206 80 CONTINUE 207 DO 100 J = 1, N 208 SUM = WORK( J ) + ABS( AP( K ) ) 209 K = K + 1 210 DO 90 I = J + 1, N 211 ABSA = ABS( AP( K ) ) 212 SUM = SUM + ABSA 213 WORK( I ) = WORK( I ) + ABSA 214 K = K + 1 215 90 CONTINUE 216 IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM 217 100 CONTINUE 218 END IF 219 ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN 220* 221* Find normF(A). 222* 223 SCALE = ZERO 224 SUM = ONE 225 K = 2 226 IF( LSAME( UPLO, 'U' ) ) THEN 227 DO 110 J = 2, N 228 CALL CLASSQ( J-1, AP( K ), 1, SCALE, SUM ) 229 K = K + J 230 110 CONTINUE 231 ELSE 232 DO 120 J = 1, N - 1 233 CALL CLASSQ( N-J, AP( K ), 1, SCALE, SUM ) 234 K = K + N - J + 1 235 120 CONTINUE 236 END IF 237 SUM = 2*SUM 238 K = 1 239 DO 130 I = 1, N 240 IF( REAL( AP( K ) ).NE.ZERO ) THEN 241 ABSA = ABS( REAL( AP( K ) ) ) 242 IF( SCALE.LT.ABSA ) THEN 243 SUM = ONE + SUM*( SCALE / ABSA )**2 244 SCALE = ABSA 245 ELSE 246 SUM = SUM + ( ABSA / SCALE )**2 247 END IF 248 END IF 249 IF( AIMAG( AP( K ) ).NE.ZERO ) THEN 250 ABSA = ABS( AIMAG( AP( K ) ) ) 251 IF( SCALE.LT.ABSA ) THEN 252 SUM = ONE + SUM*( SCALE / ABSA )**2 253 SCALE = ABSA 254 ELSE 255 SUM = SUM + ( ABSA / SCALE )**2 256 END IF 257 END IF 258 IF( LSAME( UPLO, 'U' ) ) THEN 259 K = K + I + 1 260 ELSE 261 K = K + N - I + 1 262 END IF 263 130 CONTINUE 264 VALUE = SCALE*SQRT( SUM ) 265 END IF 266* 267 CLANSP = VALUE 268 RETURN 269* 270* End of CLANSP 271* 272 END 273