1*> \brief \b CLATRZ factors an upper trapezoidal matrix by means of unitary transformations.
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download CLATRZ + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clatrz.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clatrz.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clatrz.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE CLATRZ( M, N, L, A, LDA, TAU, WORK )
22*
23*       .. Scalar Arguments ..
24*       INTEGER            L, LDA, M, N
25*       ..
26*       .. Array Arguments ..
27*       COMPLEX            A( LDA, * ), TAU( * ), WORK( * )
28*       ..
29*
30*
31*> \par Purpose:
32*  =============
33*>
34*> \verbatim
35*>
36*> CLATRZ factors the M-by-(M+L) complex upper trapezoidal matrix
37*> [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R  0 ) * Z by means
38*> of unitary transformations, where  Z is an (M+L)-by-(M+L) unitary
39*> matrix and, R and A1 are M-by-M upper triangular matrices.
40*> \endverbatim
41*
42*  Arguments:
43*  ==========
44*
45*> \param[in] M
46*> \verbatim
47*>          M is INTEGER
48*>          The number of rows of the matrix A.  M >= 0.
49*> \endverbatim
50*>
51*> \param[in] N
52*> \verbatim
53*>          N is INTEGER
54*>          The number of columns of the matrix A.  N >= 0.
55*> \endverbatim
56*>
57*> \param[in] L
58*> \verbatim
59*>          L is INTEGER
60*>          The number of columns of the matrix A containing the
61*>          meaningful part of the Householder vectors. N-M >= L >= 0.
62*> \endverbatim
63*>
64*> \param[in,out] A
65*> \verbatim
66*>          A is COMPLEX array, dimension (LDA,N)
67*>          On entry, the leading M-by-N upper trapezoidal part of the
68*>          array A must contain the matrix to be factorized.
69*>          On exit, the leading M-by-M upper triangular part of A
70*>          contains the upper triangular matrix R, and elements N-L+1 to
71*>          N of the first M rows of A, with the array TAU, represent the
72*>          unitary matrix Z as a product of M elementary reflectors.
73*> \endverbatim
74*>
75*> \param[in] LDA
76*> \verbatim
77*>          LDA is INTEGER
78*>          The leading dimension of the array A.  LDA >= max(1,M).
79*> \endverbatim
80*>
81*> \param[out] TAU
82*> \verbatim
83*>          TAU is COMPLEX array, dimension (M)
84*>          The scalar factors of the elementary reflectors.
85*> \endverbatim
86*>
87*> \param[out] WORK
88*> \verbatim
89*>          WORK is COMPLEX array, dimension (M)
90*> \endverbatim
91*
92*  Authors:
93*  ========
94*
95*> \author Univ. of Tennessee
96*> \author Univ. of California Berkeley
97*> \author Univ. of Colorado Denver
98*> \author NAG Ltd.
99*
100*> \date September 2012
101*
102*> \ingroup complexOTHERcomputational
103*
104*> \par Contributors:
105*  ==================
106*>
107*>    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
108*
109*> \par Further Details:
110*  =====================
111*>
112*> \verbatim
113*>
114*>  The factorization is obtained by Householder's method.  The kth
115*>  transformation matrix, Z( k ), which is used to introduce zeros into
116*>  the ( m - k + 1 )th row of A, is given in the form
117*>
118*>     Z( k ) = ( I     0   ),
119*>              ( 0  T( k ) )
120*>
121*>  where
122*>
123*>     T( k ) = I - tau*u( k )*u( k )**H,   u( k ) = (   1    ),
124*>                                                 (   0    )
125*>                                                 ( z( k ) )
126*>
127*>  tau is a scalar and z( k ) is an l element vector. tau and z( k )
128*>  are chosen to annihilate the elements of the kth row of A2.
129*>
130*>  The scalar tau is returned in the kth element of TAU and the vector
131*>  u( k ) in the kth row of A2, such that the elements of z( k ) are
132*>  in  a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in
133*>  the upper triangular part of A1.
134*>
135*>  Z is given by
136*>
137*>     Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ).
138*> \endverbatim
139*>
140*  =====================================================================
141      SUBROUTINE CLATRZ( M, N, L, A, LDA, TAU, WORK )
142*
143*  -- LAPACK computational routine (version 3.4.2) --
144*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
145*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
146*     September 2012
147*
148*     .. Scalar Arguments ..
149      INTEGER            L, LDA, M, N
150*     ..
151*     .. Array Arguments ..
152      COMPLEX            A( LDA, * ), TAU( * ), WORK( * )
153*     ..
154*
155*  =====================================================================
156*
157*     .. Parameters ..
158      COMPLEX            ZERO
159      PARAMETER          ( ZERO = ( 0.0E+0, 0.0E+0 ) )
160*     ..
161*     .. Local Scalars ..
162      INTEGER            I
163      COMPLEX            ALPHA
164*     ..
165*     .. External Subroutines ..
166      EXTERNAL           CLACGV, CLARFG, CLARZ
167*     ..
168*     .. Intrinsic Functions ..
169      INTRINSIC          CONJG
170*     ..
171*     .. Executable Statements ..
172*
173*     Quick return if possible
174*
175      IF( M.EQ.0 ) THEN
176         RETURN
177      ELSE IF( M.EQ.N ) THEN
178         DO 10 I = 1, N
179            TAU( I ) = ZERO
180   10    CONTINUE
181         RETURN
182      END IF
183*
184      DO 20 I = M, 1, -1
185*
186*        Generate elementary reflector H(i) to annihilate
187*        [ A(i,i) A(i,n-l+1:n) ]
188*
189         CALL CLACGV( L, A( I, N-L+1 ), LDA )
190         ALPHA = CONJG( A( I, I ) )
191         CALL CLARFG( L+1, ALPHA, A( I, N-L+1 ), LDA, TAU( I ) )
192         TAU( I ) = CONJG( TAU( I ) )
193*
194*        Apply H(i) to A(1:i-1,i:n) from the right
195*
196         CALL CLARZ( 'Right', I-1, N-I+1, L, A( I, N-L+1 ), LDA,
197     $               CONJG( TAU( I ) ), A( 1, I ), LDA, WORK )
198         A( I, I ) = CONJG( ALPHA )
199*
200   20 CONTINUE
201*
202      RETURN
203*
204*     End of CLATRZ
205*
206      END
207