1*> \brief \b CPFTRI 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download CPFTRI + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cpftri.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cpftri.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cpftri.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE CPFTRI( TRANSR, UPLO, N, A, INFO ) 22* 23* .. Scalar Arguments .. 24* CHARACTER TRANSR, UPLO 25* INTEGER INFO, N 26* .. Array Arguments .. 27* COMPLEX A( 0: * ) 28* .. 29* 30* 31*> \par Purpose: 32* ============= 33*> 34*> \verbatim 35*> 36*> CPFTRI computes the inverse of a complex Hermitian positive definite 37*> matrix A using the Cholesky factorization A = U**H*U or A = L*L**H 38*> computed by CPFTRF. 39*> \endverbatim 40* 41* Arguments: 42* ========== 43* 44*> \param[in] TRANSR 45*> \verbatim 46*> TRANSR is CHARACTER*1 47*> = 'N': The Normal TRANSR of RFP A is stored; 48*> = 'C': The Conjugate-transpose TRANSR of RFP A is stored. 49*> \endverbatim 50*> 51*> \param[in] UPLO 52*> \verbatim 53*> UPLO is CHARACTER*1 54*> = 'U': Upper triangle of A is stored; 55*> = 'L': Lower triangle of A is stored. 56*> \endverbatim 57*> 58*> \param[in] N 59*> \verbatim 60*> N is INTEGER 61*> The order of the matrix A. N >= 0. 62*> \endverbatim 63*> 64*> \param[in,out] A 65*> \verbatim 66*> A is COMPLEX array, dimension ( N*(N+1)/2 ); 67*> On entry, the Hermitian matrix A in RFP format. RFP format is 68*> described by TRANSR, UPLO, and N as follows: If TRANSR = 'N' 69*> then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is 70*> (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'C' then RFP is 71*> the Conjugate-transpose of RFP A as defined when 72*> TRANSR = 'N'. The contents of RFP A are defined by UPLO as 73*> follows: If UPLO = 'U' the RFP A contains the nt elements of 74*> upper packed A. If UPLO = 'L' the RFP A contains the elements 75*> of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR = 76*> 'C'. When TRANSR is 'N' the LDA is N+1 when N is even and N 77*> is odd. See the Note below for more details. 78*> 79*> On exit, the Hermitian inverse of the original matrix, in the 80*> same storage format. 81*> \endverbatim 82*> 83*> \param[out] INFO 84*> \verbatim 85*> INFO is INTEGER 86*> = 0: successful exit 87*> < 0: if INFO = -i, the i-th argument had an illegal value 88*> > 0: if INFO = i, the (i,i) element of the factor U or L is 89*> zero, and the inverse could not be computed. 90*> \endverbatim 91* 92* Authors: 93* ======== 94* 95*> \author Univ. of Tennessee 96*> \author Univ. of California Berkeley 97*> \author Univ. of Colorado Denver 98*> \author NAG Ltd. 99* 100*> \date November 2011 101* 102*> \ingroup complexOTHERcomputational 103* 104*> \par Further Details: 105* ===================== 106*> 107*> \verbatim 108*> 109*> We first consider Standard Packed Format when N is even. 110*> We give an example where N = 6. 111*> 112*> AP is Upper AP is Lower 113*> 114*> 00 01 02 03 04 05 00 115*> 11 12 13 14 15 10 11 116*> 22 23 24 25 20 21 22 117*> 33 34 35 30 31 32 33 118*> 44 45 40 41 42 43 44 119*> 55 50 51 52 53 54 55 120*> 121*> 122*> Let TRANSR = 'N'. RFP holds AP as follows: 123*> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last 124*> three columns of AP upper. The lower triangle A(4:6,0:2) consists of 125*> conjugate-transpose of the first three columns of AP upper. 126*> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first 127*> three columns of AP lower. The upper triangle A(0:2,0:2) consists of 128*> conjugate-transpose of the last three columns of AP lower. 129*> To denote conjugate we place -- above the element. This covers the 130*> case N even and TRANSR = 'N'. 131*> 132*> RFP A RFP A 133*> 134*> -- -- -- 135*> 03 04 05 33 43 53 136*> -- -- 137*> 13 14 15 00 44 54 138*> -- 139*> 23 24 25 10 11 55 140*> 141*> 33 34 35 20 21 22 142*> -- 143*> 00 44 45 30 31 32 144*> -- -- 145*> 01 11 55 40 41 42 146*> -- -- -- 147*> 02 12 22 50 51 52 148*> 149*> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- 150*> transpose of RFP A above. One therefore gets: 151*> 152*> 153*> RFP A RFP A 154*> 155*> -- -- -- -- -- -- -- -- -- -- 156*> 03 13 23 33 00 01 02 33 00 10 20 30 40 50 157*> -- -- -- -- -- -- -- -- -- -- 158*> 04 14 24 34 44 11 12 43 44 11 21 31 41 51 159*> -- -- -- -- -- -- -- -- -- -- 160*> 05 15 25 35 45 55 22 53 54 55 22 32 42 52 161*> 162*> 163*> We next consider Standard Packed Format when N is odd. 164*> We give an example where N = 5. 165*> 166*> AP is Upper AP is Lower 167*> 168*> 00 01 02 03 04 00 169*> 11 12 13 14 10 11 170*> 22 23 24 20 21 22 171*> 33 34 30 31 32 33 172*> 44 40 41 42 43 44 173*> 174*> 175*> Let TRANSR = 'N'. RFP holds AP as follows: 176*> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last 177*> three columns of AP upper. The lower triangle A(3:4,0:1) consists of 178*> conjugate-transpose of the first two columns of AP upper. 179*> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first 180*> three columns of AP lower. The upper triangle A(0:1,1:2) consists of 181*> conjugate-transpose of the last two columns of AP lower. 182*> To denote conjugate we place -- above the element. This covers the 183*> case N odd and TRANSR = 'N'. 184*> 185*> RFP A RFP A 186*> 187*> -- -- 188*> 02 03 04 00 33 43 189*> -- 190*> 12 13 14 10 11 44 191*> 192*> 22 23 24 20 21 22 193*> -- 194*> 00 33 34 30 31 32 195*> -- -- 196*> 01 11 44 40 41 42 197*> 198*> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- 199*> transpose of RFP A above. One therefore gets: 200*> 201*> 202*> RFP A RFP A 203*> 204*> -- -- -- -- -- -- -- -- -- 205*> 02 12 22 00 01 00 10 20 30 40 50 206*> -- -- -- -- -- -- -- -- -- 207*> 03 13 23 33 11 33 11 21 31 41 51 208*> -- -- -- -- -- -- -- -- -- 209*> 04 14 24 34 44 43 44 22 32 42 52 210*> \endverbatim 211*> 212* ===================================================================== 213 SUBROUTINE CPFTRI( TRANSR, UPLO, N, A, INFO ) 214* 215* -- LAPACK computational routine (version 3.4.0) -- 216* -- LAPACK is a software package provided by Univ. of Tennessee, -- 217* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 218* November 2011 219* 220* .. Scalar Arguments .. 221 CHARACTER TRANSR, UPLO 222 INTEGER INFO, N 223* .. Array Arguments .. 224 COMPLEX A( 0: * ) 225* .. 226* 227* ===================================================================== 228* 229* .. Parameters .. 230 REAL ONE 231 COMPLEX CONE 232 PARAMETER ( ONE = 1.0E+0, CONE = ( 1.0E+0, 0.0E+0 ) ) 233* .. 234* .. Local Scalars .. 235 LOGICAL LOWER, NISODD, NORMALTRANSR 236 INTEGER N1, N2, K 237* .. 238* .. External Functions .. 239 LOGICAL LSAME 240 EXTERNAL LSAME 241* .. 242* .. External Subroutines .. 243 EXTERNAL XERBLA, CTFTRI, CLAUUM, CTRMM, CHERK 244* .. 245* .. Intrinsic Functions .. 246 INTRINSIC MOD 247* .. 248* .. Executable Statements .. 249* 250* Test the input parameters. 251* 252 INFO = 0 253 NORMALTRANSR = LSAME( TRANSR, 'N' ) 254 LOWER = LSAME( UPLO, 'L' ) 255 IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'C' ) ) THEN 256 INFO = -1 257 ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN 258 INFO = -2 259 ELSE IF( N.LT.0 ) THEN 260 INFO = -3 261 END IF 262 IF( INFO.NE.0 ) THEN 263 CALL XERBLA( 'CPFTRI', -INFO ) 264 RETURN 265 END IF 266* 267* Quick return if possible 268* 269 IF( N.EQ.0 ) 270 $ RETURN 271* 272* Invert the triangular Cholesky factor U or L. 273* 274 CALL CTFTRI( TRANSR, UPLO, 'N', N, A, INFO ) 275 IF( INFO.GT.0 ) 276 $ RETURN 277* 278* If N is odd, set NISODD = .TRUE. 279* If N is even, set K = N/2 and NISODD = .FALSE. 280* 281 IF( MOD( N, 2 ).EQ.0 ) THEN 282 K = N / 2 283 NISODD = .FALSE. 284 ELSE 285 NISODD = .TRUE. 286 END IF 287* 288* Set N1 and N2 depending on LOWER 289* 290 IF( LOWER ) THEN 291 N2 = N / 2 292 N1 = N - N2 293 ELSE 294 N1 = N / 2 295 N2 = N - N1 296 END IF 297* 298* Start execution of triangular matrix multiply: inv(U)*inv(U)^C or 299* inv(L)^C*inv(L). There are eight cases. 300* 301 IF( NISODD ) THEN 302* 303* N is odd 304* 305 IF( NORMALTRANSR ) THEN 306* 307* N is odd and TRANSR = 'N' 308* 309 IF( LOWER ) THEN 310* 311* SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:N1-1) ) 312* T1 -> a(0,0), T2 -> a(0,1), S -> a(N1,0) 313* T1 -> a(0), T2 -> a(n), S -> a(N1) 314* 315 CALL CLAUUM( 'L', N1, A( 0 ), N, INFO ) 316 CALL CHERK( 'L', 'C', N1, N2, ONE, A( N1 ), N, ONE, 317 $ A( 0 ), N ) 318 CALL CTRMM( 'L', 'U', 'N', 'N', N2, N1, CONE, A( N ), N, 319 $ A( N1 ), N ) 320 CALL CLAUUM( 'U', N2, A( N ), N, INFO ) 321* 322 ELSE 323* 324* SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:N2-1) 325* T1 -> a(N1+1,0), T2 -> a(N1,0), S -> a(0,0) 326* T1 -> a(N2), T2 -> a(N1), S -> a(0) 327* 328 CALL CLAUUM( 'L', N1, A( N2 ), N, INFO ) 329 CALL CHERK( 'L', 'N', N1, N2, ONE, A( 0 ), N, ONE, 330 $ A( N2 ), N ) 331 CALL CTRMM( 'R', 'U', 'C', 'N', N1, N2, CONE, A( N1 ), N, 332 $ A( 0 ), N ) 333 CALL CLAUUM( 'U', N2, A( N1 ), N, INFO ) 334* 335 END IF 336* 337 ELSE 338* 339* N is odd and TRANSR = 'C' 340* 341 IF( LOWER ) THEN 342* 343* SRPA for LOWER, TRANSPOSE, and N is odd 344* T1 -> a(0), T2 -> a(1), S -> a(0+N1*N1) 345* 346 CALL CLAUUM( 'U', N1, A( 0 ), N1, INFO ) 347 CALL CHERK( 'U', 'N', N1, N2, ONE, A( N1*N1 ), N1, ONE, 348 $ A( 0 ), N1 ) 349 CALL CTRMM( 'R', 'L', 'N', 'N', N1, N2, CONE, A( 1 ), N1, 350 $ A( N1*N1 ), N1 ) 351 CALL CLAUUM( 'L', N2, A( 1 ), N1, INFO ) 352* 353 ELSE 354* 355* SRPA for UPPER, TRANSPOSE, and N is odd 356* T1 -> a(0+N2*N2), T2 -> a(0+N1*N2), S -> a(0) 357* 358 CALL CLAUUM( 'U', N1, A( N2*N2 ), N2, INFO ) 359 CALL CHERK( 'U', 'C', N1, N2, ONE, A( 0 ), N2, ONE, 360 $ A( N2*N2 ), N2 ) 361 CALL CTRMM( 'L', 'L', 'C', 'N', N2, N1, CONE, A( N1*N2 ), 362 $ N2, A( 0 ), N2 ) 363 CALL CLAUUM( 'L', N2, A( N1*N2 ), N2, INFO ) 364* 365 END IF 366* 367 END IF 368* 369 ELSE 370* 371* N is even 372* 373 IF( NORMALTRANSR ) THEN 374* 375* N is even and TRANSR = 'N' 376* 377 IF( LOWER ) THEN 378* 379* SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) ) 380* T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0) 381* T1 -> a(1), T2 -> a(0), S -> a(k+1) 382* 383 CALL CLAUUM( 'L', K, A( 1 ), N+1, INFO ) 384 CALL CHERK( 'L', 'C', K, K, ONE, A( K+1 ), N+1, ONE, 385 $ A( 1 ), N+1 ) 386 CALL CTRMM( 'L', 'U', 'N', 'N', K, K, CONE, A( 0 ), N+1, 387 $ A( K+1 ), N+1 ) 388 CALL CLAUUM( 'U', K, A( 0 ), N+1, INFO ) 389* 390 ELSE 391* 392* SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) ) 393* T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0) 394* T1 -> a(k+1), T2 -> a(k), S -> a(0) 395* 396 CALL CLAUUM( 'L', K, A( K+1 ), N+1, INFO ) 397 CALL CHERK( 'L', 'N', K, K, ONE, A( 0 ), N+1, ONE, 398 $ A( K+1 ), N+1 ) 399 CALL CTRMM( 'R', 'U', 'C', 'N', K, K, CONE, A( K ), N+1, 400 $ A( 0 ), N+1 ) 401 CALL CLAUUM( 'U', K, A( K ), N+1, INFO ) 402* 403 END IF 404* 405 ELSE 406* 407* N is even and TRANSR = 'C' 408* 409 IF( LOWER ) THEN 410* 411* SRPA for LOWER, TRANSPOSE, and N is even (see paper) 412* T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1), 413* T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k 414* 415 CALL CLAUUM( 'U', K, A( K ), K, INFO ) 416 CALL CHERK( 'U', 'N', K, K, ONE, A( K*( K+1 ) ), K, ONE, 417 $ A( K ), K ) 418 CALL CTRMM( 'R', 'L', 'N', 'N', K, K, CONE, A( 0 ), K, 419 $ A( K*( K+1 ) ), K ) 420 CALL CLAUUM( 'L', K, A( 0 ), K, INFO ) 421* 422 ELSE 423* 424* SRPA for UPPER, TRANSPOSE, and N is even (see paper) 425* T1 -> B(0,k+1), T2 -> B(0,k), S -> B(0,0), 426* T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k 427* 428 CALL CLAUUM( 'U', K, A( K*( K+1 ) ), K, INFO ) 429 CALL CHERK( 'U', 'C', K, K, ONE, A( 0 ), K, ONE, 430 $ A( K*( K+1 ) ), K ) 431 CALL CTRMM( 'L', 'L', 'C', 'N', K, K, CONE, A( K*K ), K, 432 $ A( 0 ), K ) 433 CALL CLAUUM( 'L', K, A( K*K ), K, INFO ) 434* 435 END IF 436* 437 END IF 438* 439 END IF 440* 441 RETURN 442* 443* End of CPFTRI 444* 445 END 446