1*> \brief \b DGBEQU 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download DGBEQU + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgbequ.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgbequ.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgbequ.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE DGBEQU( M, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND, 22* AMAX, INFO ) 23* 24* .. Scalar Arguments .. 25* INTEGER INFO, KL, KU, LDAB, M, N 26* DOUBLE PRECISION AMAX, COLCND, ROWCND 27* .. 28* .. Array Arguments .. 29* DOUBLE PRECISION AB( LDAB, * ), C( * ), R( * ) 30* .. 31* 32* 33*> \par Purpose: 34* ============= 35*> 36*> \verbatim 37*> 38*> DGBEQU computes row and column scalings intended to equilibrate an 39*> M-by-N band matrix A and reduce its condition number. R returns the 40*> row scale factors and C the column scale factors, chosen to try to 41*> make the largest element in each row and column of the matrix B with 42*> elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1. 43*> 44*> R(i) and C(j) are restricted to be between SMLNUM = smallest safe 45*> number and BIGNUM = largest safe number. Use of these scaling 46*> factors is not guaranteed to reduce the condition number of A but 47*> works well in practice. 48*> \endverbatim 49* 50* Arguments: 51* ========== 52* 53*> \param[in] M 54*> \verbatim 55*> M is INTEGER 56*> The number of rows of the matrix A. M >= 0. 57*> \endverbatim 58*> 59*> \param[in] N 60*> \verbatim 61*> N is INTEGER 62*> The number of columns of the matrix A. N >= 0. 63*> \endverbatim 64*> 65*> \param[in] KL 66*> \verbatim 67*> KL is INTEGER 68*> The number of subdiagonals within the band of A. KL >= 0. 69*> \endverbatim 70*> 71*> \param[in] KU 72*> \verbatim 73*> KU is INTEGER 74*> The number of superdiagonals within the band of A. KU >= 0. 75*> \endverbatim 76*> 77*> \param[in] AB 78*> \verbatim 79*> AB is DOUBLE PRECISION array, dimension (LDAB,N) 80*> The band matrix A, stored in rows 1 to KL+KU+1. The j-th 81*> column of A is stored in the j-th column of the array AB as 82*> follows: 83*> AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl). 84*> \endverbatim 85*> 86*> \param[in] LDAB 87*> \verbatim 88*> LDAB is INTEGER 89*> The leading dimension of the array AB. LDAB >= KL+KU+1. 90*> \endverbatim 91*> 92*> \param[out] R 93*> \verbatim 94*> R is DOUBLE PRECISION array, dimension (M) 95*> If INFO = 0, or INFO > M, R contains the row scale factors 96*> for A. 97*> \endverbatim 98*> 99*> \param[out] C 100*> \verbatim 101*> C is DOUBLE PRECISION array, dimension (N) 102*> If INFO = 0, C contains the column scale factors for A. 103*> \endverbatim 104*> 105*> \param[out] ROWCND 106*> \verbatim 107*> ROWCND is DOUBLE PRECISION 108*> If INFO = 0 or INFO > M, ROWCND contains the ratio of the 109*> smallest R(i) to the largest R(i). If ROWCND >= 0.1 and 110*> AMAX is neither too large nor too small, it is not worth 111*> scaling by R. 112*> \endverbatim 113*> 114*> \param[out] COLCND 115*> \verbatim 116*> COLCND is DOUBLE PRECISION 117*> If INFO = 0, COLCND contains the ratio of the smallest 118*> C(i) to the largest C(i). If COLCND >= 0.1, it is not 119*> worth scaling by C. 120*> \endverbatim 121*> 122*> \param[out] AMAX 123*> \verbatim 124*> AMAX is DOUBLE PRECISION 125*> Absolute value of largest matrix element. If AMAX is very 126*> close to overflow or very close to underflow, the matrix 127*> should be scaled. 128*> \endverbatim 129*> 130*> \param[out] INFO 131*> \verbatim 132*> INFO is INTEGER 133*> = 0: successful exit 134*> < 0: if INFO = -i, the i-th argument had an illegal value 135*> > 0: if INFO = i, and i is 136*> <= M: the i-th row of A is exactly zero 137*> > M: the (i-M)-th column of A is exactly zero 138*> \endverbatim 139* 140* Authors: 141* ======== 142* 143*> \author Univ. of Tennessee 144*> \author Univ. of California Berkeley 145*> \author Univ. of Colorado Denver 146*> \author NAG Ltd. 147* 148*> \date November 2011 149* 150*> \ingroup doubleGBcomputational 151* 152* ===================================================================== 153 SUBROUTINE DGBEQU( M, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND, 154 $ AMAX, INFO ) 155* 156* -- LAPACK computational routine (version 3.4.0) -- 157* -- LAPACK is a software package provided by Univ. of Tennessee, -- 158* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 159* November 2011 160* 161* .. Scalar Arguments .. 162 INTEGER INFO, KL, KU, LDAB, M, N 163 DOUBLE PRECISION AMAX, COLCND, ROWCND 164* .. 165* .. Array Arguments .. 166 DOUBLE PRECISION AB( LDAB, * ), C( * ), R( * ) 167* .. 168* 169* ===================================================================== 170* 171* .. Parameters .. 172 DOUBLE PRECISION ONE, ZERO 173 PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) 174* .. 175* .. Local Scalars .. 176 INTEGER I, J, KD 177 DOUBLE PRECISION BIGNUM, RCMAX, RCMIN, SMLNUM 178* .. 179* .. External Functions .. 180 DOUBLE PRECISION DLAMCH 181 EXTERNAL DLAMCH 182* .. 183* .. External Subroutines .. 184 EXTERNAL XERBLA 185* .. 186* .. Intrinsic Functions .. 187 INTRINSIC ABS, MAX, MIN 188* .. 189* .. Executable Statements .. 190* 191* Test the input parameters 192* 193 INFO = 0 194 IF( M.LT.0 ) THEN 195 INFO = -1 196 ELSE IF( N.LT.0 ) THEN 197 INFO = -2 198 ELSE IF( KL.LT.0 ) THEN 199 INFO = -3 200 ELSE IF( KU.LT.0 ) THEN 201 INFO = -4 202 ELSE IF( LDAB.LT.KL+KU+1 ) THEN 203 INFO = -6 204 END IF 205 IF( INFO.NE.0 ) THEN 206 CALL XERBLA( 'DGBEQU', -INFO ) 207 RETURN 208 END IF 209* 210* Quick return if possible 211* 212 IF( M.EQ.0 .OR. N.EQ.0 ) THEN 213 ROWCND = ONE 214 COLCND = ONE 215 AMAX = ZERO 216 RETURN 217 END IF 218* 219* Get machine constants. 220* 221 SMLNUM = DLAMCH( 'S' ) 222 BIGNUM = ONE / SMLNUM 223* 224* Compute row scale factors. 225* 226 DO 10 I = 1, M 227 R( I ) = ZERO 228 10 CONTINUE 229* 230* Find the maximum element in each row. 231* 232 KD = KU + 1 233 DO 30 J = 1, N 234 DO 20 I = MAX( J-KU, 1 ), MIN( J+KL, M ) 235 R( I ) = MAX( R( I ), ABS( AB( KD+I-J, J ) ) ) 236 20 CONTINUE 237 30 CONTINUE 238* 239* Find the maximum and minimum scale factors. 240* 241 RCMIN = BIGNUM 242 RCMAX = ZERO 243 DO 40 I = 1, M 244 RCMAX = MAX( RCMAX, R( I ) ) 245 RCMIN = MIN( RCMIN, R( I ) ) 246 40 CONTINUE 247 AMAX = RCMAX 248* 249 IF( RCMIN.EQ.ZERO ) THEN 250* 251* Find the first zero scale factor and return an error code. 252* 253 DO 50 I = 1, M 254 IF( R( I ).EQ.ZERO ) THEN 255 INFO = I 256 RETURN 257 END IF 258 50 CONTINUE 259 ELSE 260* 261* Invert the scale factors. 262* 263 DO 60 I = 1, M 264 R( I ) = ONE / MIN( MAX( R( I ), SMLNUM ), BIGNUM ) 265 60 CONTINUE 266* 267* Compute ROWCND = min(R(I)) / max(R(I)) 268* 269 ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM ) 270 END IF 271* 272* Compute column scale factors 273* 274 DO 70 J = 1, N 275 C( J ) = ZERO 276 70 CONTINUE 277* 278* Find the maximum element in each column, 279* assuming the row scaling computed above. 280* 281 KD = KU + 1 282 DO 90 J = 1, N 283 DO 80 I = MAX( J-KU, 1 ), MIN( J+KL, M ) 284 C( J ) = MAX( C( J ), ABS( AB( KD+I-J, J ) )*R( I ) ) 285 80 CONTINUE 286 90 CONTINUE 287* 288* Find the maximum and minimum scale factors. 289* 290 RCMIN = BIGNUM 291 RCMAX = ZERO 292 DO 100 J = 1, N 293 RCMIN = MIN( RCMIN, C( J ) ) 294 RCMAX = MAX( RCMAX, C( J ) ) 295 100 CONTINUE 296* 297 IF( RCMIN.EQ.ZERO ) THEN 298* 299* Find the first zero scale factor and return an error code. 300* 301 DO 110 J = 1, N 302 IF( C( J ).EQ.ZERO ) THEN 303 INFO = M + J 304 RETURN 305 END IF 306 110 CONTINUE 307 ELSE 308* 309* Invert the scale factors. 310* 311 DO 120 J = 1, N 312 C( J ) = ONE / MIN( MAX( C( J ), SMLNUM ), BIGNUM ) 313 120 CONTINUE 314* 315* Compute COLCND = min(C(J)) / max(C(J)) 316* 317 COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM ) 318 END IF 319* 320 RETURN 321* 322* End of DGBEQU 323* 324 END 325