1*> \brief <b> DGBSV computes the solution to system of linear equations A * X = B for GB matrices</b> (simple driver) 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download DGBSV + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgbsv.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgbsv.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgbsv.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE DGBSV( N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB, INFO ) 22* 23* .. Scalar Arguments .. 24* INTEGER INFO, KL, KU, LDAB, LDB, N, NRHS 25* .. 26* .. Array Arguments .. 27* INTEGER IPIV( * ) 28* DOUBLE PRECISION AB( LDAB, * ), B( LDB, * ) 29* .. 30* 31* 32*> \par Purpose: 33* ============= 34*> 35*> \verbatim 36*> 37*> DGBSV computes the solution to a real system of linear equations 38*> A * X = B, where A is a band matrix of order N with KL subdiagonals 39*> and KU superdiagonals, and X and B are N-by-NRHS matrices. 40*> 41*> The LU decomposition with partial pivoting and row interchanges is 42*> used to factor A as A = L * U, where L is a product of permutation 43*> and unit lower triangular matrices with KL subdiagonals, and U is 44*> upper triangular with KL+KU superdiagonals. The factored form of A 45*> is then used to solve the system of equations A * X = B. 46*> \endverbatim 47* 48* Arguments: 49* ========== 50* 51*> \param[in] N 52*> \verbatim 53*> N is INTEGER 54*> The number of linear equations, i.e., the order of the 55*> matrix A. N >= 0. 56*> \endverbatim 57*> 58*> \param[in] KL 59*> \verbatim 60*> KL is INTEGER 61*> The number of subdiagonals within the band of A. KL >= 0. 62*> \endverbatim 63*> 64*> \param[in] KU 65*> \verbatim 66*> KU is INTEGER 67*> The number of superdiagonals within the band of A. KU >= 0. 68*> \endverbatim 69*> 70*> \param[in] NRHS 71*> \verbatim 72*> NRHS is INTEGER 73*> The number of right hand sides, i.e., the number of columns 74*> of the matrix B. NRHS >= 0. 75*> \endverbatim 76*> 77*> \param[in,out] AB 78*> \verbatim 79*> AB is DOUBLE PRECISION array, dimension (LDAB,N) 80*> On entry, the matrix A in band storage, in rows KL+1 to 81*> 2*KL+KU+1; rows 1 to KL of the array need not be set. 82*> The j-th column of A is stored in the j-th column of the 83*> array AB as follows: 84*> AB(KL+KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+KL) 85*> On exit, details of the factorization: U is stored as an 86*> upper triangular band matrix with KL+KU superdiagonals in 87*> rows 1 to KL+KU+1, and the multipliers used during the 88*> factorization are stored in rows KL+KU+2 to 2*KL+KU+1. 89*> See below for further details. 90*> \endverbatim 91*> 92*> \param[in] LDAB 93*> \verbatim 94*> LDAB is INTEGER 95*> The leading dimension of the array AB. LDAB >= 2*KL+KU+1. 96*> \endverbatim 97*> 98*> \param[out] IPIV 99*> \verbatim 100*> IPIV is INTEGER array, dimension (N) 101*> The pivot indices that define the permutation matrix P; 102*> row i of the matrix was interchanged with row IPIV(i). 103*> \endverbatim 104*> 105*> \param[in,out] B 106*> \verbatim 107*> B is DOUBLE PRECISION array, dimension (LDB,NRHS) 108*> On entry, the N-by-NRHS right hand side matrix B. 109*> On exit, if INFO = 0, the N-by-NRHS solution matrix X. 110*> \endverbatim 111*> 112*> \param[in] LDB 113*> \verbatim 114*> LDB is INTEGER 115*> The leading dimension of the array B. LDB >= max(1,N). 116*> \endverbatim 117*> 118*> \param[out] INFO 119*> \verbatim 120*> INFO is INTEGER 121*> = 0: successful exit 122*> < 0: if INFO = -i, the i-th argument had an illegal value 123*> > 0: if INFO = i, U(i,i) is exactly zero. The factorization 124*> has been completed, but the factor U is exactly 125*> singular, and the solution has not been computed. 126*> \endverbatim 127* 128* Authors: 129* ======== 130* 131*> \author Univ. of Tennessee 132*> \author Univ. of California Berkeley 133*> \author Univ. of Colorado Denver 134*> \author NAG Ltd. 135* 136*> \date November 2011 137* 138*> \ingroup doubleGBsolve 139* 140*> \par Further Details: 141* ===================== 142*> 143*> \verbatim 144*> 145*> The band storage scheme is illustrated by the following example, when 146*> M = N = 6, KL = 2, KU = 1: 147*> 148*> On entry: On exit: 149*> 150*> * * * + + + * * * u14 u25 u36 151*> * * + + + + * * u13 u24 u35 u46 152*> * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56 153*> a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66 154*> a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 * 155*> a31 a42 a53 a64 * * m31 m42 m53 m64 * * 156*> 157*> Array elements marked * are not used by the routine; elements marked 158*> + need not be set on entry, but are required by the routine to store 159*> elements of U because of fill-in resulting from the row interchanges. 160*> \endverbatim 161*> 162* ===================================================================== 163 SUBROUTINE DGBSV( N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB, INFO ) 164* 165* -- LAPACK driver routine (version 3.4.0) -- 166* -- LAPACK is a software package provided by Univ. of Tennessee, -- 167* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 168* November 2011 169* 170* .. Scalar Arguments .. 171 INTEGER INFO, KL, KU, LDAB, LDB, N, NRHS 172* .. 173* .. Array Arguments .. 174 INTEGER IPIV( * ) 175 DOUBLE PRECISION AB( LDAB, * ), B( LDB, * ) 176* .. 177* 178* ===================================================================== 179* 180* .. External Subroutines .. 181 EXTERNAL DGBTRF, DGBTRS, XERBLA 182* .. 183* .. Intrinsic Functions .. 184 INTRINSIC MAX 185* .. 186* .. Executable Statements .. 187* 188* Test the input parameters. 189* 190 INFO = 0 191 IF( N.LT.0 ) THEN 192 INFO = -1 193 ELSE IF( KL.LT.0 ) THEN 194 INFO = -2 195 ELSE IF( KU.LT.0 ) THEN 196 INFO = -3 197 ELSE IF( NRHS.LT.0 ) THEN 198 INFO = -4 199 ELSE IF( LDAB.LT.2*KL+KU+1 ) THEN 200 INFO = -6 201 ELSE IF( LDB.LT.MAX( N, 1 ) ) THEN 202 INFO = -9 203 END IF 204 IF( INFO.NE.0 ) THEN 205 CALL XERBLA( 'DGBSV ', -INFO ) 206 RETURN 207 END IF 208* 209* Compute the LU factorization of the band matrix A. 210* 211 CALL DGBTRF( N, N, KL, KU, AB, LDAB, IPIV, INFO ) 212 IF( INFO.EQ.0 ) THEN 213* 214* Solve the system A*X = B, overwriting B with X. 215* 216 CALL DGBTRS( 'No transpose', N, KL, KU, NRHS, AB, LDAB, IPIV, 217 $ B, LDB, INFO ) 218 END IF 219 RETURN 220* 221* End of DGBSV 222* 223 END 224