1*> \brief \b DLAED4 used by sstedc. Finds a single root of the secular equation.
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download DLAED4 + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed4.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed4.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed4.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE DLAED4( N, I, D, Z, DELTA, RHO, DLAM, INFO )
22*
23*       .. Scalar Arguments ..
24*       INTEGER            I, INFO, N
25*       DOUBLE PRECISION   DLAM, RHO
26*       ..
27*       .. Array Arguments ..
28*       DOUBLE PRECISION   D( * ), DELTA( * ), Z( * )
29*       ..
30*
31*
32*> \par Purpose:
33*  =============
34*>
35*> \verbatim
36*>
37*> This subroutine computes the I-th updated eigenvalue of a symmetric
38*> rank-one modification to a diagonal matrix whose elements are
39*> given in the array d, and that
40*>
41*>            D(i) < D(j)  for  i < j
42*>
43*> and that RHO > 0.  This is arranged by the calling routine, and is
44*> no loss in generality.  The rank-one modified system is thus
45*>
46*>            diag( D )  +  RHO * Z * Z_transpose.
47*>
48*> where we assume the Euclidean norm of Z is 1.
49*>
50*> The method consists of approximating the rational functions in the
51*> secular equation by simpler interpolating rational functions.
52*> \endverbatim
53*
54*  Arguments:
55*  ==========
56*
57*> \param[in] N
58*> \verbatim
59*>          N is INTEGER
60*>         The length of all arrays.
61*> \endverbatim
62*>
63*> \param[in] I
64*> \verbatim
65*>          I is INTEGER
66*>         The index of the eigenvalue to be computed.  1 <= I <= N.
67*> \endverbatim
68*>
69*> \param[in] D
70*> \verbatim
71*>          D is DOUBLE PRECISION array, dimension (N)
72*>         The original eigenvalues.  It is assumed that they are in
73*>         order, D(I) < D(J)  for I < J.
74*> \endverbatim
75*>
76*> \param[in] Z
77*> \verbatim
78*>          Z is DOUBLE PRECISION array, dimension (N)
79*>         The components of the updating vector.
80*> \endverbatim
81*>
82*> \param[out] DELTA
83*> \verbatim
84*>          DELTA is DOUBLE PRECISION array, dimension (N)
85*>         If N .GT. 2, DELTA contains (D(j) - lambda_I) in its  j-th
86*>         component.  If N = 1, then DELTA(1) = 1. If N = 2, see DLAED5
87*>         for detail. The vector DELTA contains the information necessary
88*>         to construct the eigenvectors by DLAED3 and DLAED9.
89*> \endverbatim
90*>
91*> \param[in] RHO
92*> \verbatim
93*>          RHO is DOUBLE PRECISION
94*>         The scalar in the symmetric updating formula.
95*> \endverbatim
96*>
97*> \param[out] DLAM
98*> \verbatim
99*>          DLAM is DOUBLE PRECISION
100*>         The computed lambda_I, the I-th updated eigenvalue.
101*> \endverbatim
102*>
103*> \param[out] INFO
104*> \verbatim
105*>          INFO is INTEGER
106*>         = 0:  successful exit
107*>         > 0:  if INFO = 1, the updating process failed.
108*> \endverbatim
109*
110*> \par Internal Parameters:
111*  =========================
112*>
113*> \verbatim
114*>  Logical variable ORGATI (origin-at-i?) is used for distinguishing
115*>  whether D(i) or D(i+1) is treated as the origin.
116*>
117*>            ORGATI = .true.    origin at i
118*>            ORGATI = .false.   origin at i+1
119*>
120*>   Logical variable SWTCH3 (switch-for-3-poles?) is for noting
121*>   if we are working with THREE poles!
122*>
123*>   MAXIT is the maximum number of iterations allowed for each
124*>   eigenvalue.
125*> \endverbatim
126*
127*  Authors:
128*  ========
129*
130*> \author Univ. of Tennessee
131*> \author Univ. of California Berkeley
132*> \author Univ. of Colorado Denver
133*> \author NAG Ltd.
134*
135*> \date September 2012
136*
137*> \ingroup auxOTHERcomputational
138*
139*> \par Contributors:
140*  ==================
141*>
142*>     Ren-Cang Li, Computer Science Division, University of California
143*>     at Berkeley, USA
144*>
145*  =====================================================================
146      SUBROUTINE DLAED4( N, I, D, Z, DELTA, RHO, DLAM, INFO )
147*
148*  -- LAPACK computational routine (version 3.4.2) --
149*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
150*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
151*     September 2012
152*
153*     .. Scalar Arguments ..
154      INTEGER            I, INFO, N
155      DOUBLE PRECISION   DLAM, RHO
156*     ..
157*     .. Array Arguments ..
158      DOUBLE PRECISION   D( * ), DELTA( * ), Z( * )
159*     ..
160*
161*  =====================================================================
162*
163*     .. Parameters ..
164      INTEGER            MAXIT
165      PARAMETER          ( MAXIT = 30 )
166      DOUBLE PRECISION   ZERO, ONE, TWO, THREE, FOUR, EIGHT, TEN
167      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
168     $                   THREE = 3.0D0, FOUR = 4.0D0, EIGHT = 8.0D0,
169     $                   TEN = 10.0D0 )
170*     ..
171*     .. Local Scalars ..
172      LOGICAL            ORGATI, SWTCH, SWTCH3
173      INTEGER            II, IIM1, IIP1, IP1, ITER, J, NITER
174      DOUBLE PRECISION   A, B, C, DEL, DLTLB, DLTUB, DPHI, DPSI, DW,
175     $                   EPS, ERRETM, ETA, MIDPT, PHI, PREW, PSI,
176     $                   RHOINV, TAU, TEMP, TEMP1, W
177*     ..
178*     .. Local Arrays ..
179      DOUBLE PRECISION   ZZ( 3 )
180*     ..
181*     .. External Functions ..
182      DOUBLE PRECISION   DLAMCH
183      EXTERNAL           DLAMCH
184*     ..
185*     .. External Subroutines ..
186      EXTERNAL           DLAED5, DLAED6
187*     ..
188*     .. Intrinsic Functions ..
189      INTRINSIC          ABS, MAX, MIN, SQRT
190*     ..
191*     .. Executable Statements ..
192*
193*     Since this routine is called in an inner loop, we do no argument
194*     checking.
195*
196*     Quick return for N=1 and 2.
197*
198      INFO = 0
199      IF( N.EQ.1 ) THEN
200*
201*         Presumably, I=1 upon entry
202*
203         DLAM = D( 1 ) + RHO*Z( 1 )*Z( 1 )
204         DELTA( 1 ) = ONE
205         RETURN
206      END IF
207      IF( N.EQ.2 ) THEN
208         CALL DLAED5( I, D, Z, DELTA, RHO, DLAM )
209         RETURN
210      END IF
211*
212*     Compute machine epsilon
213*
214      EPS = DLAMCH( 'Epsilon' )
215      RHOINV = ONE / RHO
216*
217*     The case I = N
218*
219      IF( I.EQ.N ) THEN
220*
221*        Initialize some basic variables
222*
223         II = N - 1
224         NITER = 1
225*
226*        Calculate initial guess
227*
228         MIDPT = RHO / TWO
229*
230*        If ||Z||_2 is not one, then TEMP should be set to
231*        RHO * ||Z||_2^2 / TWO
232*
233         DO 10 J = 1, N
234            DELTA( J ) = ( D( J )-D( I ) ) - MIDPT
235   10    CONTINUE
236*
237         PSI = ZERO
238         DO 20 J = 1, N - 2
239            PSI = PSI + Z( J )*Z( J ) / DELTA( J )
240   20    CONTINUE
241*
242         C = RHOINV + PSI
243         W = C + Z( II )*Z( II ) / DELTA( II ) +
244     $       Z( N )*Z( N ) / DELTA( N )
245*
246         IF( W.LE.ZERO ) THEN
247            TEMP = Z( N-1 )*Z( N-1 ) / ( D( N )-D( N-1 )+RHO ) +
248     $             Z( N )*Z( N ) / RHO
249            IF( C.LE.TEMP ) THEN
250               TAU = RHO
251            ELSE
252               DEL = D( N ) - D( N-1 )
253               A = -C*DEL + Z( N-1 )*Z( N-1 ) + Z( N )*Z( N )
254               B = Z( N )*Z( N )*DEL
255               IF( A.LT.ZERO ) THEN
256                  TAU = TWO*B / ( SQRT( A*A+FOUR*B*C )-A )
257               ELSE
258                  TAU = ( A+SQRT( A*A+FOUR*B*C ) ) / ( TWO*C )
259               END IF
260            END IF
261*
262*           It can be proved that
263*               D(N)+RHO/2 <= LAMBDA(N) < D(N)+TAU <= D(N)+RHO
264*
265            DLTLB = MIDPT
266            DLTUB = RHO
267         ELSE
268            DEL = D( N ) - D( N-1 )
269            A = -C*DEL + Z( N-1 )*Z( N-1 ) + Z( N )*Z( N )
270            B = Z( N )*Z( N )*DEL
271            IF( A.LT.ZERO ) THEN
272               TAU = TWO*B / ( SQRT( A*A+FOUR*B*C )-A )
273            ELSE
274               TAU = ( A+SQRT( A*A+FOUR*B*C ) ) / ( TWO*C )
275            END IF
276*
277*           It can be proved that
278*               D(N) < D(N)+TAU < LAMBDA(N) < D(N)+RHO/2
279*
280            DLTLB = ZERO
281            DLTUB = MIDPT
282         END IF
283*
284         DO 30 J = 1, N
285            DELTA( J ) = ( D( J )-D( I ) ) - TAU
286   30    CONTINUE
287*
288*        Evaluate PSI and the derivative DPSI
289*
290         DPSI = ZERO
291         PSI = ZERO
292         ERRETM = ZERO
293         DO 40 J = 1, II
294            TEMP = Z( J ) / DELTA( J )
295            PSI = PSI + Z( J )*TEMP
296            DPSI = DPSI + TEMP*TEMP
297            ERRETM = ERRETM + PSI
298   40    CONTINUE
299         ERRETM = ABS( ERRETM )
300*
301*        Evaluate PHI and the derivative DPHI
302*
303         TEMP = Z( N ) / DELTA( N )
304         PHI = Z( N )*TEMP
305         DPHI = TEMP*TEMP
306         ERRETM = EIGHT*( -PHI-PSI ) + ERRETM - PHI + RHOINV +
307     $            ABS( TAU )*( DPSI+DPHI )
308*
309         W = RHOINV + PHI + PSI
310*
311*        Test for convergence
312*
313         IF( ABS( W ).LE.EPS*ERRETM ) THEN
314            DLAM = D( I ) + TAU
315            GO TO 250
316         END IF
317*
318         IF( W.LE.ZERO ) THEN
319            DLTLB = MAX( DLTLB, TAU )
320         ELSE
321            DLTUB = MIN( DLTUB, TAU )
322         END IF
323*
324*        Calculate the new step
325*
326         NITER = NITER + 1
327         C = W - DELTA( N-1 )*DPSI - DELTA( N )*DPHI
328         A = ( DELTA( N-1 )+DELTA( N ) )*W -
329     $       DELTA( N-1 )*DELTA( N )*( DPSI+DPHI )
330         B = DELTA( N-1 )*DELTA( N )*W
331         IF( C.LT.ZERO )
332     $      C = ABS( C )
333         IF( C.EQ.ZERO ) THEN
334*          ETA = B/A
335*           ETA = RHO - TAU
336            ETA = DLTUB - TAU
337         ELSE IF( A.GE.ZERO ) THEN
338            ETA = ( A+SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
339         ELSE
340            ETA = TWO*B / ( A-SQRT( ABS( A*A-FOUR*B*C ) ) )
341         END IF
342*
343*        Note, eta should be positive if w is negative, and
344*        eta should be negative otherwise. However,
345*        if for some reason caused by roundoff, eta*w > 0,
346*        we simply use one Newton step instead. This way
347*        will guarantee eta*w < 0.
348*
349         IF( W*ETA.GT.ZERO )
350     $      ETA = -W / ( DPSI+DPHI )
351         TEMP = TAU + ETA
352         IF( TEMP.GT.DLTUB .OR. TEMP.LT.DLTLB ) THEN
353            IF( W.LT.ZERO ) THEN
354               ETA = ( DLTUB-TAU ) / TWO
355            ELSE
356               ETA = ( DLTLB-TAU ) / TWO
357            END IF
358         END IF
359         DO 50 J = 1, N
360            DELTA( J ) = DELTA( J ) - ETA
361   50    CONTINUE
362*
363         TAU = TAU + ETA
364*
365*        Evaluate PSI and the derivative DPSI
366*
367         DPSI = ZERO
368         PSI = ZERO
369         ERRETM = ZERO
370         DO 60 J = 1, II
371            TEMP = Z( J ) / DELTA( J )
372            PSI = PSI + Z( J )*TEMP
373            DPSI = DPSI + TEMP*TEMP
374            ERRETM = ERRETM + PSI
375   60    CONTINUE
376         ERRETM = ABS( ERRETM )
377*
378*        Evaluate PHI and the derivative DPHI
379*
380         TEMP = Z( N ) / DELTA( N )
381         PHI = Z( N )*TEMP
382         DPHI = TEMP*TEMP
383         ERRETM = EIGHT*( -PHI-PSI ) + ERRETM - PHI + RHOINV +
384     $            ABS( TAU )*( DPSI+DPHI )
385*
386         W = RHOINV + PHI + PSI
387*
388*        Main loop to update the values of the array   DELTA
389*
390         ITER = NITER + 1
391*
392         DO 90 NITER = ITER, MAXIT
393*
394*           Test for convergence
395*
396            IF( ABS( W ).LE.EPS*ERRETM ) THEN
397               DLAM = D( I ) + TAU
398               GO TO 250
399            END IF
400*
401            IF( W.LE.ZERO ) THEN
402               DLTLB = MAX( DLTLB, TAU )
403            ELSE
404               DLTUB = MIN( DLTUB, TAU )
405            END IF
406*
407*           Calculate the new step
408*
409            C = W - DELTA( N-1 )*DPSI - DELTA( N )*DPHI
410            A = ( DELTA( N-1 )+DELTA( N ) )*W -
411     $          DELTA( N-1 )*DELTA( N )*( DPSI+DPHI )
412            B = DELTA( N-1 )*DELTA( N )*W
413            IF( A.GE.ZERO ) THEN
414               ETA = ( A+SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
415            ELSE
416               ETA = TWO*B / ( A-SQRT( ABS( A*A-FOUR*B*C ) ) )
417            END IF
418*
419*           Note, eta should be positive if w is negative, and
420*           eta should be negative otherwise. However,
421*           if for some reason caused by roundoff, eta*w > 0,
422*           we simply use one Newton step instead. This way
423*           will guarantee eta*w < 0.
424*
425            IF( W*ETA.GT.ZERO )
426     $         ETA = -W / ( DPSI+DPHI )
427            TEMP = TAU + ETA
428            IF( TEMP.GT.DLTUB .OR. TEMP.LT.DLTLB ) THEN
429               IF( W.LT.ZERO ) THEN
430                  ETA = ( DLTUB-TAU ) / TWO
431               ELSE
432                  ETA = ( DLTLB-TAU ) / TWO
433               END IF
434            END IF
435            DO 70 J = 1, N
436               DELTA( J ) = DELTA( J ) - ETA
437   70       CONTINUE
438*
439            TAU = TAU + ETA
440*
441*           Evaluate PSI and the derivative DPSI
442*
443            DPSI = ZERO
444            PSI = ZERO
445            ERRETM = ZERO
446            DO 80 J = 1, II
447               TEMP = Z( J ) / DELTA( J )
448               PSI = PSI + Z( J )*TEMP
449               DPSI = DPSI + TEMP*TEMP
450               ERRETM = ERRETM + PSI
451   80       CONTINUE
452            ERRETM = ABS( ERRETM )
453*
454*           Evaluate PHI and the derivative DPHI
455*
456            TEMP = Z( N ) / DELTA( N )
457            PHI = Z( N )*TEMP
458            DPHI = TEMP*TEMP
459            ERRETM = EIGHT*( -PHI-PSI ) + ERRETM - PHI + RHOINV +
460     $               ABS( TAU )*( DPSI+DPHI )
461*
462            W = RHOINV + PHI + PSI
463   90    CONTINUE
464*
465*        Return with INFO = 1, NITER = MAXIT and not converged
466*
467         INFO = 1
468         DLAM = D( I ) + TAU
469         GO TO 250
470*
471*        End for the case I = N
472*
473      ELSE
474*
475*        The case for I < N
476*
477         NITER = 1
478         IP1 = I + 1
479*
480*        Calculate initial guess
481*
482         DEL = D( IP1 ) - D( I )
483         MIDPT = DEL / TWO
484         DO 100 J = 1, N
485            DELTA( J ) = ( D( J )-D( I ) ) - MIDPT
486  100    CONTINUE
487*
488         PSI = ZERO
489         DO 110 J = 1, I - 1
490            PSI = PSI + Z( J )*Z( J ) / DELTA( J )
491  110    CONTINUE
492*
493         PHI = ZERO
494         DO 120 J = N, I + 2, -1
495            PHI = PHI + Z( J )*Z( J ) / DELTA( J )
496  120    CONTINUE
497         C = RHOINV + PSI + PHI
498         W = C + Z( I )*Z( I ) / DELTA( I ) +
499     $       Z( IP1 )*Z( IP1 ) / DELTA( IP1 )
500*
501         IF( W.GT.ZERO ) THEN
502*
503*           d(i)< the ith eigenvalue < (d(i)+d(i+1))/2
504*
505*           We choose d(i) as origin.
506*
507            ORGATI = .TRUE.
508            A = C*DEL + Z( I )*Z( I ) + Z( IP1 )*Z( IP1 )
509            B = Z( I )*Z( I )*DEL
510            IF( A.GT.ZERO ) THEN
511               TAU = TWO*B / ( A+SQRT( ABS( A*A-FOUR*B*C ) ) )
512            ELSE
513               TAU = ( A-SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
514            END IF
515            DLTLB = ZERO
516            DLTUB = MIDPT
517         ELSE
518*
519*           (d(i)+d(i+1))/2 <= the ith eigenvalue < d(i+1)
520*
521*           We choose d(i+1) as origin.
522*
523            ORGATI = .FALSE.
524            A = C*DEL - Z( I )*Z( I ) - Z( IP1 )*Z( IP1 )
525            B = Z( IP1 )*Z( IP1 )*DEL
526            IF( A.LT.ZERO ) THEN
527               TAU = TWO*B / ( A-SQRT( ABS( A*A+FOUR*B*C ) ) )
528            ELSE
529               TAU = -( A+SQRT( ABS( A*A+FOUR*B*C ) ) ) / ( TWO*C )
530            END IF
531            DLTLB = -MIDPT
532            DLTUB = ZERO
533         END IF
534*
535         IF( ORGATI ) THEN
536            DO 130 J = 1, N
537               DELTA( J ) = ( D( J )-D( I ) ) - TAU
538  130       CONTINUE
539         ELSE
540            DO 140 J = 1, N
541               DELTA( J ) = ( D( J )-D( IP1 ) ) - TAU
542  140       CONTINUE
543         END IF
544         IF( ORGATI ) THEN
545            II = I
546         ELSE
547            II = I + 1
548         END IF
549         IIM1 = II - 1
550         IIP1 = II + 1
551*
552*        Evaluate PSI and the derivative DPSI
553*
554         DPSI = ZERO
555         PSI = ZERO
556         ERRETM = ZERO
557         DO 150 J = 1, IIM1
558            TEMP = Z( J ) / DELTA( J )
559            PSI = PSI + Z( J )*TEMP
560            DPSI = DPSI + TEMP*TEMP
561            ERRETM = ERRETM + PSI
562  150    CONTINUE
563         ERRETM = ABS( ERRETM )
564*
565*        Evaluate PHI and the derivative DPHI
566*
567         DPHI = ZERO
568         PHI = ZERO
569         DO 160 J = N, IIP1, -1
570            TEMP = Z( J ) / DELTA( J )
571            PHI = PHI + Z( J )*TEMP
572            DPHI = DPHI + TEMP*TEMP
573            ERRETM = ERRETM + PHI
574  160    CONTINUE
575*
576         W = RHOINV + PHI + PSI
577*
578*        W is the value of the secular function with
579*        its ii-th element removed.
580*
581         SWTCH3 = .FALSE.
582         IF( ORGATI ) THEN
583            IF( W.LT.ZERO )
584     $         SWTCH3 = .TRUE.
585         ELSE
586            IF( W.GT.ZERO )
587     $         SWTCH3 = .TRUE.
588         END IF
589         IF( II.EQ.1 .OR. II.EQ.N )
590     $      SWTCH3 = .FALSE.
591*
592         TEMP = Z( II ) / DELTA( II )
593         DW = DPSI + DPHI + TEMP*TEMP
594         TEMP = Z( II )*TEMP
595         W = W + TEMP
596         ERRETM = EIGHT*( PHI-PSI ) + ERRETM + TWO*RHOINV +
597     $            THREE*ABS( TEMP ) + ABS( TAU )*DW
598*
599*        Test for convergence
600*
601         IF( ABS( W ).LE.EPS*ERRETM ) THEN
602            IF( ORGATI ) THEN
603               DLAM = D( I ) + TAU
604            ELSE
605               DLAM = D( IP1 ) + TAU
606            END IF
607            GO TO 250
608         END IF
609*
610         IF( W.LE.ZERO ) THEN
611            DLTLB = MAX( DLTLB, TAU )
612         ELSE
613            DLTUB = MIN( DLTUB, TAU )
614         END IF
615*
616*        Calculate the new step
617*
618         NITER = NITER + 1
619         IF( .NOT.SWTCH3 ) THEN
620            IF( ORGATI ) THEN
621               C = W - DELTA( IP1 )*DW - ( D( I )-D( IP1 ) )*
622     $             ( Z( I ) / DELTA( I ) )**2
623            ELSE
624               C = W - DELTA( I )*DW - ( D( IP1 )-D( I ) )*
625     $             ( Z( IP1 ) / DELTA( IP1 ) )**2
626            END IF
627            A = ( DELTA( I )+DELTA( IP1 ) )*W -
628     $          DELTA( I )*DELTA( IP1 )*DW
629            B = DELTA( I )*DELTA( IP1 )*W
630            IF( C.EQ.ZERO ) THEN
631               IF( A.EQ.ZERO ) THEN
632                  IF( ORGATI ) THEN
633                     A = Z( I )*Z( I ) + DELTA( IP1 )*DELTA( IP1 )*
634     $                   ( DPSI+DPHI )
635                  ELSE
636                     A = Z( IP1 )*Z( IP1 ) + DELTA( I )*DELTA( I )*
637     $                   ( DPSI+DPHI )
638                  END IF
639               END IF
640               ETA = B / A
641            ELSE IF( A.LE.ZERO ) THEN
642               ETA = ( A-SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
643            ELSE
644               ETA = TWO*B / ( A+SQRT( ABS( A*A-FOUR*B*C ) ) )
645            END IF
646         ELSE
647*
648*           Interpolation using THREE most relevant poles
649*
650            TEMP = RHOINV + PSI + PHI
651            IF( ORGATI ) THEN
652               TEMP1 = Z( IIM1 ) / DELTA( IIM1 )
653               TEMP1 = TEMP1*TEMP1
654               C = TEMP - DELTA( IIP1 )*( DPSI+DPHI ) -
655     $             ( D( IIM1 )-D( IIP1 ) )*TEMP1
656               ZZ( 1 ) = Z( IIM1 )*Z( IIM1 )
657               ZZ( 3 ) = DELTA( IIP1 )*DELTA( IIP1 )*
658     $                   ( ( DPSI-TEMP1 )+DPHI )
659            ELSE
660               TEMP1 = Z( IIP1 ) / DELTA( IIP1 )
661               TEMP1 = TEMP1*TEMP1
662               C = TEMP - DELTA( IIM1 )*( DPSI+DPHI ) -
663     $             ( D( IIP1 )-D( IIM1 ) )*TEMP1
664               ZZ( 1 ) = DELTA( IIM1 )*DELTA( IIM1 )*
665     $                   ( DPSI+( DPHI-TEMP1 ) )
666               ZZ( 3 ) = Z( IIP1 )*Z( IIP1 )
667            END IF
668            ZZ( 2 ) = Z( II )*Z( II )
669            CALL DLAED6( NITER, ORGATI, C, DELTA( IIM1 ), ZZ, W, ETA,
670     $                   INFO )
671            IF( INFO.NE.0 )
672     $         GO TO 250
673         END IF
674*
675*        Note, eta should be positive if w is negative, and
676*        eta should be negative otherwise. However,
677*        if for some reason caused by roundoff, eta*w > 0,
678*        we simply use one Newton step instead. This way
679*        will guarantee eta*w < 0.
680*
681         IF( W*ETA.GE.ZERO )
682     $      ETA = -W / DW
683         TEMP = TAU + ETA
684         IF( TEMP.GT.DLTUB .OR. TEMP.LT.DLTLB ) THEN
685            IF( W.LT.ZERO ) THEN
686               ETA = ( DLTUB-TAU ) / TWO
687            ELSE
688               ETA = ( DLTLB-TAU ) / TWO
689            END IF
690         END IF
691*
692         PREW = W
693*
694         DO 180 J = 1, N
695            DELTA( J ) = DELTA( J ) - ETA
696  180    CONTINUE
697*
698*        Evaluate PSI and the derivative DPSI
699*
700         DPSI = ZERO
701         PSI = ZERO
702         ERRETM = ZERO
703         DO 190 J = 1, IIM1
704            TEMP = Z( J ) / DELTA( J )
705            PSI = PSI + Z( J )*TEMP
706            DPSI = DPSI + TEMP*TEMP
707            ERRETM = ERRETM + PSI
708  190    CONTINUE
709         ERRETM = ABS( ERRETM )
710*
711*        Evaluate PHI and the derivative DPHI
712*
713         DPHI = ZERO
714         PHI = ZERO
715         DO 200 J = N, IIP1, -1
716            TEMP = Z( J ) / DELTA( J )
717            PHI = PHI + Z( J )*TEMP
718            DPHI = DPHI + TEMP*TEMP
719            ERRETM = ERRETM + PHI
720  200    CONTINUE
721*
722         TEMP = Z( II ) / DELTA( II )
723         DW = DPSI + DPHI + TEMP*TEMP
724         TEMP = Z( II )*TEMP
725         W = RHOINV + PHI + PSI + TEMP
726         ERRETM = EIGHT*( PHI-PSI ) + ERRETM + TWO*RHOINV +
727     $            THREE*ABS( TEMP ) + ABS( TAU+ETA )*DW
728*
729         SWTCH = .FALSE.
730         IF( ORGATI ) THEN
731            IF( -W.GT.ABS( PREW ) / TEN )
732     $         SWTCH = .TRUE.
733         ELSE
734            IF( W.GT.ABS( PREW ) / TEN )
735     $         SWTCH = .TRUE.
736         END IF
737*
738         TAU = TAU + ETA
739*
740*        Main loop to update the values of the array   DELTA
741*
742         ITER = NITER + 1
743*
744         DO 240 NITER = ITER, MAXIT
745*
746*           Test for convergence
747*
748            IF( ABS( W ).LE.EPS*ERRETM ) THEN
749               IF( ORGATI ) THEN
750                  DLAM = D( I ) + TAU
751               ELSE
752                  DLAM = D( IP1 ) + TAU
753               END IF
754               GO TO 250
755            END IF
756*
757            IF( W.LE.ZERO ) THEN
758               DLTLB = MAX( DLTLB, TAU )
759            ELSE
760               DLTUB = MIN( DLTUB, TAU )
761            END IF
762*
763*           Calculate the new step
764*
765            IF( .NOT.SWTCH3 ) THEN
766               IF( .NOT.SWTCH ) THEN
767                  IF( ORGATI ) THEN
768                     C = W - DELTA( IP1 )*DW -
769     $                   ( D( I )-D( IP1 ) )*( Z( I ) / DELTA( I ) )**2
770                  ELSE
771                     C = W - DELTA( I )*DW - ( D( IP1 )-D( I ) )*
772     $                   ( Z( IP1 ) / DELTA( IP1 ) )**2
773                  END IF
774               ELSE
775                  TEMP = Z( II ) / DELTA( II )
776                  IF( ORGATI ) THEN
777                     DPSI = DPSI + TEMP*TEMP
778                  ELSE
779                     DPHI = DPHI + TEMP*TEMP
780                  END IF
781                  C = W - DELTA( I )*DPSI - DELTA( IP1 )*DPHI
782               END IF
783               A = ( DELTA( I )+DELTA( IP1 ) )*W -
784     $             DELTA( I )*DELTA( IP1 )*DW
785               B = DELTA( I )*DELTA( IP1 )*W
786               IF( C.EQ.ZERO ) THEN
787                  IF( A.EQ.ZERO ) THEN
788                     IF( .NOT.SWTCH ) THEN
789                        IF( ORGATI ) THEN
790                           A = Z( I )*Z( I ) + DELTA( IP1 )*
791     $                         DELTA( IP1 )*( DPSI+DPHI )
792                        ELSE
793                           A = Z( IP1 )*Z( IP1 ) +
794     $                         DELTA( I )*DELTA( I )*( DPSI+DPHI )
795                        END IF
796                     ELSE
797                        A = DELTA( I )*DELTA( I )*DPSI +
798     $                      DELTA( IP1 )*DELTA( IP1 )*DPHI
799                     END IF
800                  END IF
801                  ETA = B / A
802               ELSE IF( A.LE.ZERO ) THEN
803                  ETA = ( A-SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
804               ELSE
805                  ETA = TWO*B / ( A+SQRT( ABS( A*A-FOUR*B*C ) ) )
806               END IF
807            ELSE
808*
809*              Interpolation using THREE most relevant poles
810*
811               TEMP = RHOINV + PSI + PHI
812               IF( SWTCH ) THEN
813                  C = TEMP - DELTA( IIM1 )*DPSI - DELTA( IIP1 )*DPHI
814                  ZZ( 1 ) = DELTA( IIM1 )*DELTA( IIM1 )*DPSI
815                  ZZ( 3 ) = DELTA( IIP1 )*DELTA( IIP1 )*DPHI
816               ELSE
817                  IF( ORGATI ) THEN
818                     TEMP1 = Z( IIM1 ) / DELTA( IIM1 )
819                     TEMP1 = TEMP1*TEMP1
820                     C = TEMP - DELTA( IIP1 )*( DPSI+DPHI ) -
821     $                   ( D( IIM1 )-D( IIP1 ) )*TEMP1
822                     ZZ( 1 ) = Z( IIM1 )*Z( IIM1 )
823                     ZZ( 3 ) = DELTA( IIP1 )*DELTA( IIP1 )*
824     $                         ( ( DPSI-TEMP1 )+DPHI )
825                  ELSE
826                     TEMP1 = Z( IIP1 ) / DELTA( IIP1 )
827                     TEMP1 = TEMP1*TEMP1
828                     C = TEMP - DELTA( IIM1 )*( DPSI+DPHI ) -
829     $                   ( D( IIP1 )-D( IIM1 ) )*TEMP1
830                     ZZ( 1 ) = DELTA( IIM1 )*DELTA( IIM1 )*
831     $                         ( DPSI+( DPHI-TEMP1 ) )
832                     ZZ( 3 ) = Z( IIP1 )*Z( IIP1 )
833                  END IF
834               END IF
835               CALL DLAED6( NITER, ORGATI, C, DELTA( IIM1 ), ZZ, W, ETA,
836     $                      INFO )
837               IF( INFO.NE.0 )
838     $            GO TO 250
839            END IF
840*
841*           Note, eta should be positive if w is negative, and
842*           eta should be negative otherwise. However,
843*           if for some reason caused by roundoff, eta*w > 0,
844*           we simply use one Newton step instead. This way
845*           will guarantee eta*w < 0.
846*
847            IF( W*ETA.GE.ZERO )
848     $         ETA = -W / DW
849            TEMP = TAU + ETA
850            IF( TEMP.GT.DLTUB .OR. TEMP.LT.DLTLB ) THEN
851               IF( W.LT.ZERO ) THEN
852                  ETA = ( DLTUB-TAU ) / TWO
853               ELSE
854                  ETA = ( DLTLB-TAU ) / TWO
855               END IF
856            END IF
857*
858            DO 210 J = 1, N
859               DELTA( J ) = DELTA( J ) - ETA
860  210       CONTINUE
861*
862            TAU = TAU + ETA
863            PREW = W
864*
865*           Evaluate PSI and the derivative DPSI
866*
867            DPSI = ZERO
868            PSI = ZERO
869            ERRETM = ZERO
870            DO 220 J = 1, IIM1
871               TEMP = Z( J ) / DELTA( J )
872               PSI = PSI + Z( J )*TEMP
873               DPSI = DPSI + TEMP*TEMP
874               ERRETM = ERRETM + PSI
875  220       CONTINUE
876            ERRETM = ABS( ERRETM )
877*
878*           Evaluate PHI and the derivative DPHI
879*
880            DPHI = ZERO
881            PHI = ZERO
882            DO 230 J = N, IIP1, -1
883               TEMP = Z( J ) / DELTA( J )
884               PHI = PHI + Z( J )*TEMP
885               DPHI = DPHI + TEMP*TEMP
886               ERRETM = ERRETM + PHI
887  230       CONTINUE
888*
889            TEMP = Z( II ) / DELTA( II )
890            DW = DPSI + DPHI + TEMP*TEMP
891            TEMP = Z( II )*TEMP
892            W = RHOINV + PHI + PSI + TEMP
893            ERRETM = EIGHT*( PHI-PSI ) + ERRETM + TWO*RHOINV +
894     $               THREE*ABS( TEMP ) + ABS( TAU )*DW
895            IF( W*PREW.GT.ZERO .AND. ABS( W ).GT.ABS( PREW ) / TEN )
896     $         SWTCH = .NOT.SWTCH
897*
898  240    CONTINUE
899*
900*        Return with INFO = 1, NITER = MAXIT and not converged
901*
902         INFO = 1
903         IF( ORGATI ) THEN
904            DLAM = D( I ) + TAU
905         ELSE
906            DLAM = D( IP1 ) + TAU
907         END IF
908*
909      END IF
910*
911  250 CONTINUE
912*
913      RETURN
914*
915*     End of DLAED4
916*
917      END
918