1*> \brief <b> DPOSVXX computes the solution to system of linear equations A * X = B for PO matrices</b>
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download DPOSVXX + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dposvxx.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dposvxx.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dposvxx.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE DPOSVXX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
22*                           S, B, LDB, X, LDX, RCOND, RPVGRW, BERR,
23*                           N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP,
24*                           NPARAMS, PARAMS, WORK, IWORK, INFO )
25*
26*       .. Scalar Arguments ..
27*       CHARACTER          EQUED, FACT, UPLO
28*       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
29*      $                   N_ERR_BNDS
30*       DOUBLE PRECISION   RCOND, RPVGRW
31*       ..
32*       .. Array Arguments ..
33*       INTEGER            IWORK( * )
34*       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
35*      $                   X( LDX, * ), WORK( * )
36*       DOUBLE PRECISION   S( * ), PARAMS( * ), BERR( * ),
37*      $                   ERR_BNDS_NORM( NRHS, * ),
38*      $                   ERR_BNDS_COMP( NRHS, * )
39*       ..
40*
41*
42*> \par Purpose:
43*  =============
44*>
45*> \verbatim
46*>
47*>    DPOSVXX uses the Cholesky factorization A = U**T*U or A = L*L**T
48*>    to compute the solution to a double precision system of linear equations
49*>    A * X = B, where A is an N-by-N symmetric positive definite matrix
50*>    and X and B are N-by-NRHS matrices.
51*>
52*>    If requested, both normwise and maximum componentwise error bounds
53*>    are returned. DPOSVXX will return a solution with a tiny
54*>    guaranteed error (O(eps) where eps is the working machine
55*>    precision) unless the matrix is very ill-conditioned, in which
56*>    case a warning is returned. Relevant condition numbers also are
57*>    calculated and returned.
58*>
59*>    DPOSVXX accepts user-provided factorizations and equilibration
60*>    factors; see the definitions of the FACT and EQUED options.
61*>    Solving with refinement and using a factorization from a previous
62*>    DPOSVXX call will also produce a solution with either O(eps)
63*>    errors or warnings, but we cannot make that claim for general
64*>    user-provided factorizations and equilibration factors if they
65*>    differ from what DPOSVXX would itself produce.
66*> \endverbatim
67*
68*> \par Description:
69*  =================
70*>
71*> \verbatim
72*>
73*>    The following steps are performed:
74*>
75*>    1. If FACT = 'E', double precision scaling factors are computed to equilibrate
76*>    the system:
77*>
78*>      diag(S)*A*diag(S)     *inv(diag(S))*X = diag(S)*B
79*>
80*>    Whether or not the system will be equilibrated depends on the
81*>    scaling of the matrix A, but if equilibration is used, A is
82*>    overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
83*>
84*>    2. If FACT = 'N' or 'E', the Cholesky decomposition is used to
85*>    factor the matrix A (after equilibration if FACT = 'E') as
86*>       A = U**T* U,  if UPLO = 'U', or
87*>       A = L * L**T,  if UPLO = 'L',
88*>    where U is an upper triangular matrix and L is a lower triangular
89*>    matrix.
90*>
91*>    3. If the leading i-by-i principal minor is not positive definite,
92*>    then the routine returns with INFO = i. Otherwise, the factored
93*>    form of A is used to estimate the condition number of the matrix
94*>    A (see argument RCOND).  If the reciprocal of the condition number
95*>    is less than machine precision, the routine still goes on to solve
96*>    for X and compute error bounds as described below.
97*>
98*>    4. The system of equations is solved for X using the factored form
99*>    of A.
100*>
101*>    5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero),
102*>    the routine will use iterative refinement to try to get a small
103*>    error and error bounds.  Refinement calculates the residual to at
104*>    least twice the working precision.
105*>
106*>    6. If equilibration was used, the matrix X is premultiplied by
107*>    diag(S) so that it solves the original system before
108*>    equilibration.
109*> \endverbatim
110*
111*  Arguments:
112*  ==========
113*
114*> \verbatim
115*>     Some optional parameters are bundled in the PARAMS array.  These
116*>     settings determine how refinement is performed, but often the
117*>     defaults are acceptable.  If the defaults are acceptable, users
118*>     can pass NPARAMS = 0 which prevents the source code from accessing
119*>     the PARAMS argument.
120*> \endverbatim
121*>
122*> \param[in] FACT
123*> \verbatim
124*>          FACT is CHARACTER*1
125*>     Specifies whether or not the factored form of the matrix A is
126*>     supplied on entry, and if not, whether the matrix A should be
127*>     equilibrated before it is factored.
128*>       = 'F':  On entry, AF contains the factored form of A.
129*>               If EQUED is not 'N', the matrix A has been
130*>               equilibrated with scaling factors given by S.
131*>               A and AF are not modified.
132*>       = 'N':  The matrix A will be copied to AF and factored.
133*>       = 'E':  The matrix A will be equilibrated if necessary, then
134*>               copied to AF and factored.
135*> \endverbatim
136*>
137*> \param[in] UPLO
138*> \verbatim
139*>          UPLO is CHARACTER*1
140*>       = 'U':  Upper triangle of A is stored;
141*>       = 'L':  Lower triangle of A is stored.
142*> \endverbatim
143*>
144*> \param[in] N
145*> \verbatim
146*>          N is INTEGER
147*>     The number of linear equations, i.e., the order of the
148*>     matrix A.  N >= 0.
149*> \endverbatim
150*>
151*> \param[in] NRHS
152*> \verbatim
153*>          NRHS is INTEGER
154*>     The number of right hand sides, i.e., the number of columns
155*>     of the matrices B and X.  NRHS >= 0.
156*> \endverbatim
157*>
158*> \param[in,out] A
159*> \verbatim
160*>          A is DOUBLE PRECISION array, dimension (LDA,N)
161*>     On entry, the symmetric matrix A, except if FACT = 'F' and EQUED =
162*>     'Y', then A must contain the equilibrated matrix
163*>     diag(S)*A*diag(S).  If UPLO = 'U', the leading N-by-N upper
164*>     triangular part of A contains the upper triangular part of the
165*>     matrix A, and the strictly lower triangular part of A is not
166*>     referenced.  If UPLO = 'L', the leading N-by-N lower triangular
167*>     part of A contains the lower triangular part of the matrix A, and
168*>     the strictly upper triangular part of A is not referenced.  A is
169*>     not modified if FACT = 'F' or 'N', or if FACT = 'E' and EQUED =
170*>     'N' on exit.
171*>
172*>     On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
173*>     diag(S)*A*diag(S).
174*> \endverbatim
175*>
176*> \param[in] LDA
177*> \verbatim
178*>          LDA is INTEGER
179*>     The leading dimension of the array A.  LDA >= max(1,N).
180*> \endverbatim
181*>
182*> \param[in,out] AF
183*> \verbatim
184*>          AF is DOUBLE PRECISION array, dimension (LDAF,N)
185*>     If FACT = 'F', then AF is an input argument and on entry
186*>     contains the triangular factor U or L from the Cholesky
187*>     factorization A = U**T*U or A = L*L**T, in the same storage
188*>     format as A.  If EQUED .ne. 'N', then AF is the factored
189*>     form of the equilibrated matrix diag(S)*A*diag(S).
190*>
191*>     If FACT = 'N', then AF is an output argument and on exit
192*>     returns the triangular factor U or L from the Cholesky
193*>     factorization A = U**T*U or A = L*L**T of the original
194*>     matrix A.
195*>
196*>     If FACT = 'E', then AF is an output argument and on exit
197*>     returns the triangular factor U or L from the Cholesky
198*>     factorization A = U**T*U or A = L*L**T of the equilibrated
199*>     matrix A (see the description of A for the form of the
200*>     equilibrated matrix).
201*> \endverbatim
202*>
203*> \param[in] LDAF
204*> \verbatim
205*>          LDAF is INTEGER
206*>     The leading dimension of the array AF.  LDAF >= max(1,N).
207*> \endverbatim
208*>
209*> \param[in,out] EQUED
210*> \verbatim
211*>          EQUED is CHARACTER*1
212*>     Specifies the form of equilibration that was done.
213*>       = 'N':  No equilibration (always true if FACT = 'N').
214*>       = 'Y':  Both row and column equilibration, i.e., A has been
215*>               replaced by diag(S) * A * diag(S).
216*>     EQUED is an input argument if FACT = 'F'; otherwise, it is an
217*>     output argument.
218*> \endverbatim
219*>
220*> \param[in,out] S
221*> \verbatim
222*>          S is DOUBLE PRECISION array, dimension (N)
223*>     The row scale factors for A.  If EQUED = 'Y', A is multiplied on
224*>     the left and right by diag(S).  S is an input argument if FACT =
225*>     'F'; otherwise, S is an output argument.  If FACT = 'F' and EQUED
226*>     = 'Y', each element of S must be positive.  If S is output, each
227*>     element of S is a power of the radix. If S is input, each element
228*>     of S should be a power of the radix to ensure a reliable solution
229*>     and error estimates. Scaling by powers of the radix does not cause
230*>     rounding errors unless the result underflows or overflows.
231*>     Rounding errors during scaling lead to refining with a matrix that
232*>     is not equivalent to the input matrix, producing error estimates
233*>     that may not be reliable.
234*> \endverbatim
235*>
236*> \param[in,out] B
237*> \verbatim
238*>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
239*>     On entry, the N-by-NRHS right hand side matrix B.
240*>     On exit,
241*>     if EQUED = 'N', B is not modified;
242*>     if EQUED = 'Y', B is overwritten by diag(S)*B;
243*> \endverbatim
244*>
245*> \param[in] LDB
246*> \verbatim
247*>          LDB is INTEGER
248*>     The leading dimension of the array B.  LDB >= max(1,N).
249*> \endverbatim
250*>
251*> \param[out] X
252*> \verbatim
253*>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
254*>     If INFO = 0, the N-by-NRHS solution matrix X to the original
255*>     system of equations.  Note that A and B are modified on exit if
256*>     EQUED .ne. 'N', and the solution to the equilibrated system is
257*>     inv(diag(S))*X.
258*> \endverbatim
259*>
260*> \param[in] LDX
261*> \verbatim
262*>          LDX is INTEGER
263*>     The leading dimension of the array X.  LDX >= max(1,N).
264*> \endverbatim
265*>
266*> \param[out] RCOND
267*> \verbatim
268*>          RCOND is DOUBLE PRECISION
269*>     Reciprocal scaled condition number.  This is an estimate of the
270*>     reciprocal Skeel condition number of the matrix A after
271*>     equilibration (if done).  If this is less than the machine
272*>     precision (in particular, if it is zero), the matrix is singular
273*>     to working precision.  Note that the error may still be small even
274*>     if this number is very small and the matrix appears ill-
275*>     conditioned.
276*> \endverbatim
277*>
278*> \param[out] RPVGRW
279*> \verbatim
280*>          RPVGRW is DOUBLE PRECISION
281*>     Reciprocal pivot growth.  On exit, this contains the reciprocal
282*>     pivot growth factor norm(A)/norm(U). The "max absolute element"
283*>     norm is used.  If this is much less than 1, then the stability of
284*>     the LU factorization of the (equilibrated) matrix A could be poor.
285*>     This also means that the solution X, estimated condition numbers,
286*>     and error bounds could be unreliable. If factorization fails with
287*>     0<INFO<=N, then this contains the reciprocal pivot growth factor
288*>     for the leading INFO columns of A.
289*> \endverbatim
290*>
291*> \param[out] BERR
292*> \verbatim
293*>          BERR is DOUBLE PRECISION array, dimension (NRHS)
294*>     Componentwise relative backward error.  This is the
295*>     componentwise relative backward error of each solution vector X(j)
296*>     (i.e., the smallest relative change in any element of A or B that
297*>     makes X(j) an exact solution).
298*> \endverbatim
299*>
300*> \param[in] N_ERR_BNDS
301*> \verbatim
302*>          N_ERR_BNDS is INTEGER
303*>     Number of error bounds to return for each right hand side
304*>     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
305*>     ERR_BNDS_COMP below.
306*> \endverbatim
307*>
308*> \param[out] ERR_BNDS_NORM
309*> \verbatim
310*>          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
311*>     For each right-hand side, this array contains information about
312*>     various error bounds and condition numbers corresponding to the
313*>     normwise relative error, which is defined as follows:
314*>
315*>     Normwise relative error in the ith solution vector:
316*>             max_j (abs(XTRUE(j,i) - X(j,i)))
317*>            ------------------------------
318*>                  max_j abs(X(j,i))
319*>
320*>     The array is indexed by the type of error information as described
321*>     below. There currently are up to three pieces of information
322*>     returned.
323*>
324*>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
325*>     right-hand side.
326*>
327*>     The second index in ERR_BNDS_NORM(:,err) contains the following
328*>     three fields:
329*>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
330*>              reciprocal condition number is less than the threshold
331*>              sqrt(n) * dlamch('Epsilon').
332*>
333*>     err = 2 "Guaranteed" error bound: The estimated forward error,
334*>              almost certainly within a factor of 10 of the true error
335*>              so long as the next entry is greater than the threshold
336*>              sqrt(n) * dlamch('Epsilon'). This error bound should only
337*>              be trusted if the previous boolean is true.
338*>
339*>     err = 3  Reciprocal condition number: Estimated normwise
340*>              reciprocal condition number.  Compared with the threshold
341*>              sqrt(n) * dlamch('Epsilon') to determine if the error
342*>              estimate is "guaranteed". These reciprocal condition
343*>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
344*>              appropriately scaled matrix Z.
345*>              Let Z = S*A, where S scales each row by a power of the
346*>              radix so all absolute row sums of Z are approximately 1.
347*>
348*>     See Lapack Working Note 165 for further details and extra
349*>     cautions.
350*> \endverbatim
351*>
352*> \param[out] ERR_BNDS_COMP
353*> \verbatim
354*>          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
355*>     For each right-hand side, this array contains information about
356*>     various error bounds and condition numbers corresponding to the
357*>     componentwise relative error, which is defined as follows:
358*>
359*>     Componentwise relative error in the ith solution vector:
360*>                    abs(XTRUE(j,i) - X(j,i))
361*>             max_j ----------------------
362*>                         abs(X(j,i))
363*>
364*>     The array is indexed by the right-hand side i (on which the
365*>     componentwise relative error depends), and the type of error
366*>     information as described below. There currently are up to three
367*>     pieces of information returned for each right-hand side. If
368*>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
369*>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
370*>     the first (:,N_ERR_BNDS) entries are returned.
371*>
372*>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
373*>     right-hand side.
374*>
375*>     The second index in ERR_BNDS_COMP(:,err) contains the following
376*>     three fields:
377*>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
378*>              reciprocal condition number is less than the threshold
379*>              sqrt(n) * dlamch('Epsilon').
380*>
381*>     err = 2 "Guaranteed" error bound: The estimated forward error,
382*>              almost certainly within a factor of 10 of the true error
383*>              so long as the next entry is greater than the threshold
384*>              sqrt(n) * dlamch('Epsilon'). This error bound should only
385*>              be trusted if the previous boolean is true.
386*>
387*>     err = 3  Reciprocal condition number: Estimated componentwise
388*>              reciprocal condition number.  Compared with the threshold
389*>              sqrt(n) * dlamch('Epsilon') to determine if the error
390*>              estimate is "guaranteed". These reciprocal condition
391*>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
392*>              appropriately scaled matrix Z.
393*>              Let Z = S*(A*diag(x)), where x is the solution for the
394*>              current right-hand side and S scales each row of
395*>              A*diag(x) by a power of the radix so all absolute row
396*>              sums of Z are approximately 1.
397*>
398*>     See Lapack Working Note 165 for further details and extra
399*>     cautions.
400*> \endverbatim
401*>
402*> \param[in] NPARAMS
403*> \verbatim
404*>          NPARAMS is INTEGER
405*>     Specifies the number of parameters set in PARAMS.  If .LE. 0, the
406*>     PARAMS array is never referenced and default values are used.
407*> \endverbatim
408*>
409*> \param[in,out] PARAMS
410*> \verbatim
411*>          PARAMS is DOUBLE PRECISION array, dimension NPARAMS
412*>     Specifies algorithm parameters.  If an entry is .LT. 0.0, then
413*>     that entry will be filled with default value used for that
414*>     parameter.  Only positions up to NPARAMS are accessed; defaults
415*>     are used for higher-numbered parameters.
416*>
417*>       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
418*>            refinement or not.
419*>         Default: 1.0D+0
420*>            = 0.0 : No refinement is performed, and no error bounds are
421*>                    computed.
422*>            = 1.0 : Use the extra-precise refinement algorithm.
423*>              (other values are reserved for future use)
424*>
425*>       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
426*>            computations allowed for refinement.
427*>         Default: 10
428*>         Aggressive: Set to 100 to permit convergence using approximate
429*>                     factorizations or factorizations other than LU. If
430*>                     the factorization uses a technique other than
431*>                     Gaussian elimination, the guarantees in
432*>                     err_bnds_norm and err_bnds_comp may no longer be
433*>                     trustworthy.
434*>
435*>       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
436*>            will attempt to find a solution with small componentwise
437*>            relative error in the double-precision algorithm.  Positive
438*>            is true, 0.0 is false.
439*>         Default: 1.0 (attempt componentwise convergence)
440*> \endverbatim
441*>
442*> \param[out] WORK
443*> \verbatim
444*>          WORK is DOUBLE PRECISION array, dimension (4*N)
445*> \endverbatim
446*>
447*> \param[out] IWORK
448*> \verbatim
449*>          IWORK is INTEGER array, dimension (N)
450*> \endverbatim
451*>
452*> \param[out] INFO
453*> \verbatim
454*>          INFO is INTEGER
455*>       = 0:  Successful exit. The solution to every right-hand side is
456*>         guaranteed.
457*>       < 0:  If INFO = -i, the i-th argument had an illegal value
458*>       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
459*>         has been completed, but the factor U is exactly singular, so
460*>         the solution and error bounds could not be computed. RCOND = 0
461*>         is returned.
462*>       = N+J: The solution corresponding to the Jth right-hand side is
463*>         not guaranteed. The solutions corresponding to other right-
464*>         hand sides K with K > J may not be guaranteed as well, but
465*>         only the first such right-hand side is reported. If a small
466*>         componentwise error is not requested (PARAMS(3) = 0.0) then
467*>         the Jth right-hand side is the first with a normwise error
468*>         bound that is not guaranteed (the smallest J such
469*>         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
470*>         the Jth right-hand side is the first with either a normwise or
471*>         componentwise error bound that is not guaranteed (the smallest
472*>         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
473*>         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
474*>         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
475*>         about all of the right-hand sides check ERR_BNDS_NORM or
476*>         ERR_BNDS_COMP.
477*> \endverbatim
478*
479*  Authors:
480*  ========
481*
482*> \author Univ. of Tennessee
483*> \author Univ. of California Berkeley
484*> \author Univ. of Colorado Denver
485*> \author NAG Ltd.
486*
487*> \date April 2012
488*
489*> \ingroup doublePOsolve
490*
491*  =====================================================================
492      SUBROUTINE DPOSVXX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED,
493     $                    S, B, LDB, X, LDX, RCOND, RPVGRW, BERR,
494     $                    N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP,
495     $                    NPARAMS, PARAMS, WORK, IWORK, INFO )
496*
497*  -- LAPACK driver routine (version 3.4.1) --
498*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
499*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
500*     April 2012
501*
502*     .. Scalar Arguments ..
503      CHARACTER          EQUED, FACT, UPLO
504      INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
505     $                   N_ERR_BNDS
506      DOUBLE PRECISION   RCOND, RPVGRW
507*     ..
508*     .. Array Arguments ..
509      INTEGER            IWORK( * )
510      DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
511     $                   X( LDX, * ), WORK( * )
512      DOUBLE PRECISION   S( * ), PARAMS( * ), BERR( * ),
513     $                   ERR_BNDS_NORM( NRHS, * ),
514     $                   ERR_BNDS_COMP( NRHS, * )
515*     ..
516*
517*  ==================================================================
518*
519*     .. Parameters ..
520      DOUBLE PRECISION   ZERO, ONE
521      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
522      INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
523      INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
524      INTEGER            CMP_ERR_I, PIV_GROWTH_I
525      PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
526     $                   BERR_I = 3 )
527      PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
528      PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
529     $                   PIV_GROWTH_I = 9 )
530*     ..
531*     .. Local Scalars ..
532      LOGICAL            EQUIL, NOFACT, RCEQU
533      INTEGER            INFEQU, J
534      DOUBLE PRECISION   AMAX, BIGNUM, SMIN, SMAX,
535     $                   SCOND, SMLNUM
536*     ..
537*     .. External Functions ..
538      EXTERNAL           LSAME, DLAMCH, DLA_PORPVGRW
539      LOGICAL            LSAME
540      DOUBLE PRECISION   DLAMCH, DLA_PORPVGRW
541*     ..
542*     .. External Subroutines ..
543      EXTERNAL           DPOEQUB, DPOTRF, DPOTRS, DLACPY, DLAQSY,
544     $                   XERBLA, DLASCL2, DPORFSX
545*     ..
546*     .. Intrinsic Functions ..
547      INTRINSIC          MAX, MIN
548*     ..
549*     .. Executable Statements ..
550*
551      INFO = 0
552      NOFACT = LSAME( FACT, 'N' )
553      EQUIL = LSAME( FACT, 'E' )
554      SMLNUM = DLAMCH( 'Safe minimum' )
555      BIGNUM = ONE / SMLNUM
556      IF( NOFACT .OR. EQUIL ) THEN
557         EQUED = 'N'
558         RCEQU = .FALSE.
559      ELSE
560         RCEQU = LSAME( EQUED, 'Y' )
561      ENDIF
562*
563*     Default is failure.  If an input parameter is wrong or
564*     factorization fails, make everything look horrible.  Only the
565*     pivot growth is set here, the rest is initialized in DPORFSX.
566*
567      RPVGRW = ZERO
568*
569*     Test the input parameters.  PARAMS is not tested until DPORFSX.
570*
571      IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.
572     $     LSAME( FACT, 'F' ) ) THEN
573         INFO = -1
574      ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND.
575     $         .NOT.LSAME( UPLO, 'L' ) ) THEN
576         INFO = -2
577      ELSE IF( N.LT.0 ) THEN
578         INFO = -3
579      ELSE IF( NRHS.LT.0 ) THEN
580         INFO = -4
581      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
582         INFO = -6
583      ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
584         INFO = -8
585      ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
586     $        ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
587         INFO = -9
588      ELSE
589         IF ( RCEQU ) THEN
590            SMIN = BIGNUM
591            SMAX = ZERO
592            DO 10 J = 1, N
593               SMIN = MIN( SMIN, S( J ) )
594               SMAX = MAX( SMAX, S( J ) )
595 10         CONTINUE
596            IF( SMIN.LE.ZERO ) THEN
597               INFO = -10
598            ELSE IF( N.GT.0 ) THEN
599               SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
600            ELSE
601               SCOND = ONE
602            END IF
603         END IF
604         IF( INFO.EQ.0 ) THEN
605            IF( LDB.LT.MAX( 1, N ) ) THEN
606               INFO = -12
607            ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
608               INFO = -14
609            END IF
610         END IF
611      END IF
612*
613      IF( INFO.NE.0 ) THEN
614         CALL XERBLA( 'DPOSVXX', -INFO )
615         RETURN
616      END IF
617*
618      IF( EQUIL ) THEN
619*
620*     Compute row and column scalings to equilibrate the matrix A.
621*
622         CALL DPOEQUB( N, A, LDA, S, SCOND, AMAX, INFEQU )
623         IF( INFEQU.EQ.0 ) THEN
624*
625*     Equilibrate the matrix.
626*
627            CALL DLAQSY( UPLO, N, A, LDA, S, SCOND, AMAX, EQUED )
628            RCEQU = LSAME( EQUED, 'Y' )
629         END IF
630      END IF
631*
632*     Scale the right-hand side.
633*
634      IF( RCEQU ) CALL DLASCL2( N, NRHS, S, B, LDB )
635*
636      IF( NOFACT .OR. EQUIL ) THEN
637*
638*        Compute the Cholesky factorization of A.
639*
640         CALL DLACPY( UPLO, N, N, A, LDA, AF, LDAF )
641         CALL DPOTRF( UPLO, N, AF, LDAF, INFO )
642*
643*        Return if INFO is non-zero.
644*
645         IF( INFO.NE.0 ) THEN
646*
647*           Pivot in column INFO is exactly 0
648*           Compute the reciprocal pivot growth factor of the
649*           leading rank-deficient INFO columns of A.
650*
651            RPVGRW = DLA_PORPVGRW( UPLO, INFO, A, LDA, AF, LDAF, WORK )
652            RETURN
653         ENDIF
654      END IF
655*
656*     Compute the reciprocal growth factor RPVGRW.
657*
658      RPVGRW = DLA_PORPVGRW( UPLO, N, A, LDA, AF, LDAF, WORK )
659*
660*     Compute the solution matrix X.
661*
662      CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
663      CALL DPOTRS( UPLO, N, NRHS, AF, LDAF, X, LDX, INFO )
664*
665*     Use iterative refinement to improve the computed solution and
666*     compute error bounds and backward error estimates for it.
667*
668      CALL DPORFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF,
669     $     S, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS, ERR_BNDS_NORM,
670     $     ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, IWORK, INFO )
671
672*
673*     Scale solutions.
674*
675      IF ( RCEQU ) THEN
676         CALL DLASCL2 ( N, NRHS, S, X, LDX )
677      END IF
678*
679      RETURN
680*
681*     End of DPOSVXX
682*
683      END
684