1*> \brief <b> DSTEVR computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download DSTEVR + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dstevr.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dstevr.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dstevr.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE DSTEVR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
22*                          M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK,
23*                          LIWORK, INFO )
24*
25*       .. Scalar Arguments ..
26*       CHARACTER          JOBZ, RANGE
27*       INTEGER            IL, INFO, IU, LDZ, LIWORK, LWORK, M, N
28*       DOUBLE PRECISION   ABSTOL, VL, VU
29*       ..
30*       .. Array Arguments ..
31*       INTEGER            ISUPPZ( * ), IWORK( * )
32*       DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
33*       ..
34*
35*
36*> \par Purpose:
37*  =============
38*>
39*> \verbatim
40*>
41*> DSTEVR computes selected eigenvalues and, optionally, eigenvectors
42*> of a real symmetric tridiagonal matrix T.  Eigenvalues and
43*> eigenvectors can be selected by specifying either a range of values
44*> or a range of indices for the desired eigenvalues.
45*>
46*> Whenever possible, DSTEVR calls DSTEMR to compute the
47*> eigenspectrum using Relatively Robust Representations.  DSTEMR
48*> computes eigenvalues by the dqds algorithm, while orthogonal
49*> eigenvectors are computed from various "good" L D L^T representations
50*> (also known as Relatively Robust Representations). Gram-Schmidt
51*> orthogonalization is avoided as far as possible. More specifically,
52*> the various steps of the algorithm are as follows. For the i-th
53*> unreduced block of T,
54*>    (a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T
55*>         is a relatively robust representation,
56*>    (b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T to high
57*>        relative accuracy by the dqds algorithm,
58*>    (c) If there is a cluster of close eigenvalues, "choose" sigma_i
59*>        close to the cluster, and go to step (a),
60*>    (d) Given the approximate eigenvalue lambda_j of L_i D_i L_i^T,
61*>        compute the corresponding eigenvector by forming a
62*>        rank-revealing twisted factorization.
63*> The desired accuracy of the output can be specified by the input
64*> parameter ABSTOL.
65*>
66*> For more details, see "A new O(n^2) algorithm for the symmetric
67*> tridiagonal eigenvalue/eigenvector problem", by Inderjit Dhillon,
68*> Computer Science Division Technical Report No. UCB//CSD-97-971,
69*> UC Berkeley, May 1997.
70*>
71*>
72*> Note 1 : DSTEVR calls DSTEMR when the full spectrum is requested
73*> on machines which conform to the ieee-754 floating point standard.
74*> DSTEVR calls DSTEBZ and DSTEIN on non-ieee machines and
75*> when partial spectrum requests are made.
76*>
77*> Normal execution of DSTEMR may create NaNs and infinities and
78*> hence may abort due to a floating point exception in environments
79*> which do not handle NaNs and infinities in the ieee standard default
80*> manner.
81*> \endverbatim
82*
83*  Arguments:
84*  ==========
85*
86*> \param[in] JOBZ
87*> \verbatim
88*>          JOBZ is CHARACTER*1
89*>          = 'N':  Compute eigenvalues only;
90*>          = 'V':  Compute eigenvalues and eigenvectors.
91*> \endverbatim
92*>
93*> \param[in] RANGE
94*> \verbatim
95*>          RANGE is CHARACTER*1
96*>          = 'A': all eigenvalues will be found.
97*>          = 'V': all eigenvalues in the half-open interval (VL,VU]
98*>                 will be found.
99*>          = 'I': the IL-th through IU-th eigenvalues will be found.
100*>          For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and
101*>          DSTEIN are called
102*> \endverbatim
103*>
104*> \param[in] N
105*> \verbatim
106*>          N is INTEGER
107*>          The order of the matrix.  N >= 0.
108*> \endverbatim
109*>
110*> \param[in,out] D
111*> \verbatim
112*>          D is DOUBLE PRECISION array, dimension (N)
113*>          On entry, the n diagonal elements of the tridiagonal matrix
114*>          A.
115*>          On exit, D may be multiplied by a constant factor chosen
116*>          to avoid over/underflow in computing the eigenvalues.
117*> \endverbatim
118*>
119*> \param[in,out] E
120*> \verbatim
121*>          E is DOUBLE PRECISION array, dimension (max(1,N-1))
122*>          On entry, the (n-1) subdiagonal elements of the tridiagonal
123*>          matrix A in elements 1 to N-1 of E.
124*>          On exit, E may be multiplied by a constant factor chosen
125*>          to avoid over/underflow in computing the eigenvalues.
126*> \endverbatim
127*>
128*> \param[in] VL
129*> \verbatim
130*>          VL is DOUBLE PRECISION
131*> \endverbatim
132*>
133*> \param[in] VU
134*> \verbatim
135*>          VU is DOUBLE PRECISION
136*>          If RANGE='V', the lower and upper bounds of the interval to
137*>          be searched for eigenvalues. VL < VU.
138*>          Not referenced if RANGE = 'A' or 'I'.
139*> \endverbatim
140*>
141*> \param[in] IL
142*> \verbatim
143*>          IL is INTEGER
144*> \endverbatim
145*>
146*> \param[in] IU
147*> \verbatim
148*>          IU is INTEGER
149*>          If RANGE='I', the indices (in ascending order) of the
150*>          smallest and largest eigenvalues to be returned.
151*>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
152*>          Not referenced if RANGE = 'A' or 'V'.
153*> \endverbatim
154*>
155*> \param[in] ABSTOL
156*> \verbatim
157*>          ABSTOL is DOUBLE PRECISION
158*>          The absolute error tolerance for the eigenvalues.
159*>          An approximate eigenvalue is accepted as converged
160*>          when it is determined to lie in an interval [a,b]
161*>          of width less than or equal to
162*>
163*>                  ABSTOL + EPS *   max( |a|,|b| ) ,
164*>
165*>          where EPS is the machine precision.  If ABSTOL is less than
166*>          or equal to zero, then  EPS*|T|  will be used in its place,
167*>          where |T| is the 1-norm of the tridiagonal matrix obtained
168*>          by reducing A to tridiagonal form.
169*>
170*>          See "Computing Small Singular Values of Bidiagonal Matrices
171*>          with Guaranteed High Relative Accuracy," by Demmel and
172*>          Kahan, LAPACK Working Note #3.
173*>
174*>          If high relative accuracy is important, set ABSTOL to
175*>          DLAMCH( 'Safe minimum' ).  Doing so will guarantee that
176*>          eigenvalues are computed to high relative accuracy when
177*>          possible in future releases.  The current code does not
178*>          make any guarantees about high relative accuracy, but
179*>          future releases will. See J. Barlow and J. Demmel,
180*>          "Computing Accurate Eigensystems of Scaled Diagonally
181*>          Dominant Matrices", LAPACK Working Note #7, for a discussion
182*>          of which matrices define their eigenvalues to high relative
183*>          accuracy.
184*> \endverbatim
185*>
186*> \param[out] M
187*> \verbatim
188*>          M is INTEGER
189*>          The total number of eigenvalues found.  0 <= M <= N.
190*>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
191*> \endverbatim
192*>
193*> \param[out] W
194*> \verbatim
195*>          W is DOUBLE PRECISION array, dimension (N)
196*>          The first M elements contain the selected eigenvalues in
197*>          ascending order.
198*> \endverbatim
199*>
200*> \param[out] Z
201*> \verbatim
202*>          Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
203*>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
204*>          contain the orthonormal eigenvectors of the matrix A
205*>          corresponding to the selected eigenvalues, with the i-th
206*>          column of Z holding the eigenvector associated with W(i).
207*>          Note: the user must ensure that at least max(1,M) columns are
208*>          supplied in the array Z; if RANGE = 'V', the exact value of M
209*>          is not known in advance and an upper bound must be used.
210*> \endverbatim
211*>
212*> \param[in] LDZ
213*> \verbatim
214*>          LDZ is INTEGER
215*>          The leading dimension of the array Z.  LDZ >= 1, and if
216*>          JOBZ = 'V', LDZ >= max(1,N).
217*> \endverbatim
218*>
219*> \param[out] ISUPPZ
220*> \verbatim
221*>          ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
222*>          The support of the eigenvectors in Z, i.e., the indices
223*>          indicating the nonzero elements in Z. The i-th eigenvector
224*>          is nonzero only in elements ISUPPZ( 2*i-1 ) through
225*>          ISUPPZ( 2*i ).
226*>          Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
227*> \endverbatim
228*>
229*> \param[out] WORK
230*> \verbatim
231*>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
232*>          On exit, if INFO = 0, WORK(1) returns the optimal (and
233*>          minimal) LWORK.
234*> \endverbatim
235*>
236*> \param[in] LWORK
237*> \verbatim
238*>          LWORK is INTEGER
239*>          The dimension of the array WORK.  LWORK >= max(1,20*N).
240*>
241*>          If LWORK = -1, then a workspace query is assumed; the routine
242*>          only calculates the optimal sizes of the WORK and IWORK
243*>          arrays, returns these values as the first entries of the WORK
244*>          and IWORK arrays, and no error message related to LWORK or
245*>          LIWORK is issued by XERBLA.
246*> \endverbatim
247*>
248*> \param[out] IWORK
249*> \verbatim
250*>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
251*>          On exit, if INFO = 0, IWORK(1) returns the optimal (and
252*>          minimal) LIWORK.
253*> \endverbatim
254*>
255*> \param[in] LIWORK
256*> \verbatim
257*>          LIWORK is INTEGER
258*>          The dimension of the array IWORK.  LIWORK >= max(1,10*N).
259*>
260*>          If LIWORK = -1, then a workspace query is assumed; the
261*>          routine only calculates the optimal sizes of the WORK and
262*>          IWORK arrays, returns these values as the first entries of
263*>          the WORK and IWORK arrays, and no error message related to
264*>          LWORK or LIWORK is issued by XERBLA.
265*> \endverbatim
266*>
267*> \param[out] INFO
268*> \verbatim
269*>          INFO is INTEGER
270*>          = 0:  successful exit
271*>          < 0:  if INFO = -i, the i-th argument had an illegal value
272*>          > 0:  Internal error
273*> \endverbatim
274*
275*  Authors:
276*  ========
277*
278*> \author Univ. of Tennessee
279*> \author Univ. of California Berkeley
280*> \author Univ. of Colorado Denver
281*> \author NAG Ltd.
282*
283*> \date November 2015
284*
285*> \ingroup doubleOTHEReigen
286*
287*> \par Contributors:
288*  ==================
289*>
290*>     Inderjit Dhillon, IBM Almaden, USA \n
291*>     Osni Marques, LBNL/NERSC, USA \n
292*>     Ken Stanley, Computer Science Division, University of
293*>       California at Berkeley, USA \n
294*>
295*  =====================================================================
296      SUBROUTINE DSTEVR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
297     $                   M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK,
298     $                   LIWORK, INFO )
299*
300*  -- LAPACK driver routine (version 3.6.0) --
301*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
302*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
303*     November 2015
304*
305*     .. Scalar Arguments ..
306      CHARACTER          JOBZ, RANGE
307      INTEGER            IL, INFO, IU, LDZ, LIWORK, LWORK, M, N
308      DOUBLE PRECISION   ABSTOL, VL, VU
309*     ..
310*     .. Array Arguments ..
311      INTEGER            ISUPPZ( * ), IWORK( * )
312      DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
313*     ..
314*
315*  =====================================================================
316*
317*     .. Parameters ..
318      DOUBLE PRECISION   ZERO, ONE, TWO
319      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
320*     ..
321*     .. Local Scalars ..
322      LOGICAL            ALLEIG, INDEIG, TEST, LQUERY, VALEIG, WANTZ,
323     $                   TRYRAC
324      CHARACTER          ORDER
325      INTEGER            I, IEEEOK, IMAX, INDIBL, INDIFL, INDISP,
326     $                   INDIWO, ISCALE, ITMP1, J, JJ, LIWMIN, LWMIN,
327     $                   NSPLIT
328      DOUBLE PRECISION   BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA, SMLNUM,
329     $                   TMP1, TNRM, VLL, VUU
330*     ..
331*     .. External Functions ..
332      LOGICAL            LSAME
333      INTEGER            ILAENV
334      DOUBLE PRECISION   DLAMCH, DLANST
335      EXTERNAL           LSAME, ILAENV, DLAMCH, DLANST
336*     ..
337*     .. External Subroutines ..
338      EXTERNAL           DCOPY, DSCAL, DSTEBZ, DSTEMR, DSTEIN, DSTERF,
339     $                   DSWAP, XERBLA
340*     ..
341*     .. Intrinsic Functions ..
342      INTRINSIC          MAX, MIN, SQRT
343*     ..
344*     .. Executable Statements ..
345*
346*
347*     Test the input parameters.
348*
349      IEEEOK = ILAENV( 10, 'DSTEVR', 'N', 1, 2, 3, 4 )
350*
351      WANTZ = LSAME( JOBZ, 'V' )
352      ALLEIG = LSAME( RANGE, 'A' )
353      VALEIG = LSAME( RANGE, 'V' )
354      INDEIG = LSAME( RANGE, 'I' )
355*
356      LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LIWORK.EQ.-1 ) )
357      LWMIN = MAX( 1, 20*N )
358      LIWMIN = MAX( 1, 10*N )
359*
360*
361      INFO = 0
362      IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
363         INFO = -1
364      ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
365         INFO = -2
366      ELSE IF( N.LT.0 ) THEN
367         INFO = -3
368      ELSE
369         IF( VALEIG ) THEN
370            IF( N.GT.0 .AND. VU.LE.VL )
371     $         INFO = -7
372         ELSE IF( INDEIG ) THEN
373            IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
374               INFO = -8
375            ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
376               INFO = -9
377            END IF
378         END IF
379      END IF
380      IF( INFO.EQ.0 ) THEN
381         IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
382            INFO = -14
383         END IF
384      END IF
385*
386      IF( INFO.EQ.0 ) THEN
387         WORK( 1 ) = LWMIN
388         IWORK( 1 ) = LIWMIN
389*
390         IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
391            INFO = -17
392         ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
393            INFO = -19
394         END IF
395      END IF
396*
397      IF( INFO.NE.0 ) THEN
398         CALL XERBLA( 'DSTEVR', -INFO )
399         RETURN
400      ELSE IF( LQUERY ) THEN
401         RETURN
402      END IF
403*
404*     Quick return if possible
405*
406      M = 0
407      IF( N.EQ.0 )
408     $   RETURN
409*
410      IF( N.EQ.1 ) THEN
411         IF( ALLEIG .OR. INDEIG ) THEN
412            M = 1
413            W( 1 ) = D( 1 )
414         ELSE
415            IF( VL.LT.D( 1 ) .AND. VU.GE.D( 1 ) ) THEN
416               M = 1
417               W( 1 ) = D( 1 )
418            END IF
419         END IF
420         IF( WANTZ )
421     $      Z( 1, 1 ) = ONE
422         RETURN
423      END IF
424*
425*     Get machine constants.
426*
427      SAFMIN = DLAMCH( 'Safe minimum' )
428      EPS = DLAMCH( 'Precision' )
429      SMLNUM = SAFMIN / EPS
430      BIGNUM = ONE / SMLNUM
431      RMIN = SQRT( SMLNUM )
432      RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
433*
434*
435*     Scale matrix to allowable range, if necessary.
436*
437      ISCALE = 0
438      IF( VALEIG ) THEN
439         VLL = VL
440         VUU = VU
441      END IF
442*
443      TNRM = DLANST( 'M', N, D, E )
444      IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN
445         ISCALE = 1
446         SIGMA = RMIN / TNRM
447      ELSE IF( TNRM.GT.RMAX ) THEN
448         ISCALE = 1
449         SIGMA = RMAX / TNRM
450      END IF
451      IF( ISCALE.EQ.1 ) THEN
452         CALL DSCAL( N, SIGMA, D, 1 )
453         CALL DSCAL( N-1, SIGMA, E( 1 ), 1 )
454         IF( VALEIG ) THEN
455            VLL = VL*SIGMA
456            VUU = VU*SIGMA
457         END IF
458      END IF
459
460*     Initialize indices into workspaces.  Note: These indices are used only
461*     if DSTERF or DSTEMR fail.
462
463*     IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and
464*     stores the block indices of each of the M<=N eigenvalues.
465      INDIBL = 1
466*     IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and
467*     stores the starting and finishing indices of each block.
468      INDISP = INDIBL + N
469*     IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
470*     that corresponding to eigenvectors that fail to converge in
471*     DSTEIN.  This information is discarded; if any fail, the driver
472*     returns INFO > 0.
473      INDIFL = INDISP + N
474*     INDIWO is the offset of the remaining integer workspace.
475      INDIWO = INDISP + N
476*
477*     If all eigenvalues are desired, then
478*     call DSTERF or DSTEMR.  If this fails for some eigenvalue, then
479*     try DSTEBZ.
480*
481*
482      TEST = .FALSE.
483      IF( INDEIG ) THEN
484         IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
485            TEST = .TRUE.
486         END IF
487      END IF
488      IF( ( ALLEIG .OR. TEST ) .AND. IEEEOK.EQ.1 ) THEN
489         CALL DCOPY( N-1, E( 1 ), 1, WORK( 1 ), 1 )
490         IF( .NOT.WANTZ ) THEN
491            CALL DCOPY( N, D, 1, W, 1 )
492            CALL DSTERF( N, W, WORK, INFO )
493         ELSE
494            CALL DCOPY( N, D, 1, WORK( N+1 ), 1 )
495            IF (ABSTOL .LE. TWO*N*EPS) THEN
496               TRYRAC = .TRUE.
497            ELSE
498               TRYRAC = .FALSE.
499            END IF
500            CALL DSTEMR( JOBZ, 'A', N, WORK( N+1 ), WORK, VL, VU, IL,
501     $                   IU, M, W, Z, LDZ, N, ISUPPZ, TRYRAC,
502     $                   WORK( 2*N+1 ), LWORK-2*N, IWORK, LIWORK, INFO )
503*
504         END IF
505         IF( INFO.EQ.0 ) THEN
506            M = N
507            GO TO 10
508         END IF
509         INFO = 0
510      END IF
511*
512*     Otherwise, call DSTEBZ and, if eigenvectors are desired, DSTEIN.
513*
514      IF( WANTZ ) THEN
515         ORDER = 'B'
516      ELSE
517         ORDER = 'E'
518      END IF
519
520      CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTOL, D, E, M,
521     $             NSPLIT, W, IWORK( INDIBL ), IWORK( INDISP ), WORK,
522     $             IWORK( INDIWO ), INFO )
523*
524      IF( WANTZ ) THEN
525         CALL DSTEIN( N, D, E, M, W, IWORK( INDIBL ), IWORK( INDISP ),
526     $                Z, LDZ, WORK, IWORK( INDIWO ), IWORK( INDIFL ),
527     $                INFO )
528      END IF
529*
530*     If matrix was scaled, then rescale eigenvalues appropriately.
531*
532   10 CONTINUE
533      IF( ISCALE.EQ.1 ) THEN
534         IF( INFO.EQ.0 ) THEN
535            IMAX = M
536         ELSE
537            IMAX = INFO - 1
538         END IF
539         CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
540      END IF
541*
542*     If eigenvalues are not in order, then sort them, along with
543*     eigenvectors.
544*
545      IF( WANTZ ) THEN
546         DO 30 J = 1, M - 1
547            I = 0
548            TMP1 = W( J )
549            DO 20 JJ = J + 1, M
550               IF( W( JJ ).LT.TMP1 ) THEN
551                  I = JJ
552                  TMP1 = W( JJ )
553               END IF
554   20       CONTINUE
555*
556            IF( I.NE.0 ) THEN
557               ITMP1 = IWORK( I )
558               W( I ) = W( J )
559               IWORK( I ) = IWORK( J )
560               W( J ) = TMP1
561               IWORK( J ) = ITMP1
562               CALL DSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
563            END IF
564   30    CONTINUE
565      END IF
566*
567*      Causes problems with tests 19 & 20:
568*      IF (wantz .and. INDEIG ) Z( 1,1) = Z(1,1) / 1.002 + .002
569*
570*
571      WORK( 1 ) = LWMIN
572      IWORK( 1 ) = LIWMIN
573      RETURN
574*
575*     End of DSTEVR
576*
577      END
578