1*> \brief \b SLAHR2 reduces the specified number of first columns of a general rectangular matrix A so that elements below the specified subdiagonal are zero, and returns auxiliary matrices which are needed to apply the transformation to the unreduced part of A.
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download SLAHR2 + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slahr2.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slahr2.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slahr2.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE SLAHR2( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY )
22*
23*       .. Scalar Arguments ..
24*       INTEGER            K, LDA, LDT, LDY, N, NB
25*       ..
26*       .. Array Arguments ..
27*       REAL              A( LDA, * ), T( LDT, NB ), TAU( NB ),
28*      $                   Y( LDY, NB )
29*       ..
30*
31*
32*> \par Purpose:
33*  =============
34*>
35*> \verbatim
36*>
37*> SLAHR2 reduces the first NB columns of A real general n-BY-(n-k+1)
38*> matrix A so that elements below the k-th subdiagonal are zero. The
39*> reduction is performed by an orthogonal similarity transformation
40*> Q**T * A * Q. The routine returns the matrices V and T which determine
41*> Q as a block reflector I - V*T*V**T, and also the matrix Y = A * V * T.
42*>
43*> This is an auxiliary routine called by SGEHRD.
44*> \endverbatim
45*
46*  Arguments:
47*  ==========
48*
49*> \param[in] N
50*> \verbatim
51*>          N is INTEGER
52*>          The order of the matrix A.
53*> \endverbatim
54*>
55*> \param[in] K
56*> \verbatim
57*>          K is INTEGER
58*>          The offset for the reduction. Elements below the k-th
59*>          subdiagonal in the first NB columns are reduced to zero.
60*>          K < N.
61*> \endverbatim
62*>
63*> \param[in] NB
64*> \verbatim
65*>          NB is INTEGER
66*>          The number of columns to be reduced.
67*> \endverbatim
68*>
69*> \param[in,out] A
70*> \verbatim
71*>          A is REAL array, dimension (LDA,N-K+1)
72*>          On entry, the n-by-(n-k+1) general matrix A.
73*>          On exit, the elements on and above the k-th subdiagonal in
74*>          the first NB columns are overwritten with the corresponding
75*>          elements of the reduced matrix; the elements below the k-th
76*>          subdiagonal, with the array TAU, represent the matrix Q as a
77*>          product of elementary reflectors. The other columns of A are
78*>          unchanged. See Further Details.
79*> \endverbatim
80*>
81*> \param[in] LDA
82*> \verbatim
83*>          LDA is INTEGER
84*>          The leading dimension of the array A.  LDA >= max(1,N).
85*> \endverbatim
86*>
87*> \param[out] TAU
88*> \verbatim
89*>          TAU is REAL array, dimension (NB)
90*>          The scalar factors of the elementary reflectors. See Further
91*>          Details.
92*> \endverbatim
93*>
94*> \param[out] T
95*> \verbatim
96*>          T is REAL array, dimension (LDT,NB)
97*>          The upper triangular matrix T.
98*> \endverbatim
99*>
100*> \param[in] LDT
101*> \verbatim
102*>          LDT is INTEGER
103*>          The leading dimension of the array T.  LDT >= NB.
104*> \endverbatim
105*>
106*> \param[out] Y
107*> \verbatim
108*>          Y is REAL array, dimension (LDY,NB)
109*>          The n-by-nb matrix Y.
110*> \endverbatim
111*>
112*> \param[in] LDY
113*> \verbatim
114*>          LDY is INTEGER
115*>          The leading dimension of the array Y. LDY >= N.
116*> \endverbatim
117*
118*  Authors:
119*  ========
120*
121*> \author Univ. of Tennessee
122*> \author Univ. of California Berkeley
123*> \author Univ. of Colorado Denver
124*> \author NAG Ltd.
125*
126*> \date September 2012
127*
128*> \ingroup realOTHERauxiliary
129*
130*> \par Further Details:
131*  =====================
132*>
133*> \verbatim
134*>
135*>  The matrix Q is represented as a product of nb elementary reflectors
136*>
137*>     Q = H(1) H(2) . . . H(nb).
138*>
139*>  Each H(i) has the form
140*>
141*>     H(i) = I - tau * v * v**T
142*>
143*>  where tau is a real scalar, and v is a real vector with
144*>  v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in
145*>  A(i+k+1:n,i), and tau in TAU(i).
146*>
147*>  The elements of the vectors v together form the (n-k+1)-by-nb matrix
148*>  V which is needed, with T and Y, to apply the transformation to the
149*>  unreduced part of the matrix, using an update of the form:
150*>  A := (I - V*T*V**T) * (A - Y*V**T).
151*>
152*>  The contents of A on exit are illustrated by the following example
153*>  with n = 7, k = 3 and nb = 2:
154*>
155*>     ( a   a   a   a   a )
156*>     ( a   a   a   a   a )
157*>     ( a   a   a   a   a )
158*>     ( h   h   a   a   a )
159*>     ( v1  h   a   a   a )
160*>     ( v1  v2  a   a   a )
161*>     ( v1  v2  a   a   a )
162*>
163*>  where a denotes an element of the original matrix A, h denotes a
164*>  modified element of the upper Hessenberg matrix H, and vi denotes an
165*>  element of the vector defining H(i).
166*>
167*>  This subroutine is a slight modification of LAPACK-3.0's DLAHRD
168*>  incorporating improvements proposed by Quintana-Orti and Van de
169*>  Gejin. Note that the entries of A(1:K,2:NB) differ from those
170*>  returned by the original LAPACK-3.0's DLAHRD routine. (This
171*>  subroutine is not backward compatible with LAPACK-3.0's DLAHRD.)
172*> \endverbatim
173*
174*> \par References:
175*  ================
176*>
177*>  Gregorio Quintana-Orti and Robert van de Geijn, "Improving the
178*>  performance of reduction to Hessenberg form," ACM Transactions on
179*>  Mathematical Software, 32(2):180-194, June 2006.
180*>
181*  =====================================================================
182      SUBROUTINE SLAHR2( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY )
183*
184*  -- LAPACK auxiliary routine (version 3.4.2) --
185*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
186*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
187*     September 2012
188*
189*     .. Scalar Arguments ..
190      INTEGER            K, LDA, LDT, LDY, N, NB
191*     ..
192*     .. Array Arguments ..
193      REAL              A( LDA, * ), T( LDT, NB ), TAU( NB ),
194     $                   Y( LDY, NB )
195*     ..
196*
197*  =====================================================================
198*
199*     .. Parameters ..
200      REAL              ZERO, ONE
201      PARAMETER          ( ZERO = 0.0E+0,
202     $                     ONE = 1.0E+0 )
203*     ..
204*     .. Local Scalars ..
205      INTEGER            I
206      REAL              EI
207*     ..
208*     .. External Subroutines ..
209      EXTERNAL           SAXPY, SCOPY, SGEMM, SGEMV, SLACPY,
210     $                   SLARFG, SSCAL, STRMM, STRMV
211*     ..
212*     .. Intrinsic Functions ..
213      INTRINSIC          MIN
214*     ..
215*     .. Executable Statements ..
216*
217*     Quick return if possible
218*
219      IF( N.LE.1 )
220     $   RETURN
221*
222      DO 10 I = 1, NB
223         IF( I.GT.1 ) THEN
224*
225*           Update A(K+1:N,I)
226*
227*           Update I-th column of A - Y * V**T
228*
229            CALL SGEMV( 'NO TRANSPOSE', N-K, I-1, -ONE, Y(K+1,1), LDY,
230     $                  A( K+I-1, 1 ), LDA, ONE, A( K+1, I ), 1 )
231*
232*           Apply I - V * T**T * V**T to this column (call it b) from the
233*           left, using the last column of T as workspace
234*
235*           Let  V = ( V1 )   and   b = ( b1 )   (first I-1 rows)
236*                    ( V2 )             ( b2 )
237*
238*           where V1 is unit lower triangular
239*
240*           w := V1**T * b1
241*
242            CALL SCOPY( I-1, A( K+1, I ), 1, T( 1, NB ), 1 )
243            CALL STRMV( 'Lower', 'Transpose', 'UNIT',
244     $                  I-1, A( K+1, 1 ),
245     $                  LDA, T( 1, NB ), 1 )
246*
247*           w := w + V2**T * b2
248*
249            CALL SGEMV( 'Transpose', N-K-I+1, I-1,
250     $                  ONE, A( K+I, 1 ),
251     $                  LDA, A( K+I, I ), 1, ONE, T( 1, NB ), 1 )
252*
253*           w := T**T * w
254*
255            CALL STRMV( 'Upper', 'Transpose', 'NON-UNIT',
256     $                  I-1, T, LDT,
257     $                  T( 1, NB ), 1 )
258*
259*           b2 := b2 - V2*w
260*
261            CALL SGEMV( 'NO TRANSPOSE', N-K-I+1, I-1, -ONE,
262     $                  A( K+I, 1 ),
263     $                  LDA, T( 1, NB ), 1, ONE, A( K+I, I ), 1 )
264*
265*           b1 := b1 - V1*w
266*
267            CALL STRMV( 'Lower', 'NO TRANSPOSE',
268     $                  'UNIT', I-1,
269     $                  A( K+1, 1 ), LDA, T( 1, NB ), 1 )
270            CALL SAXPY( I-1, -ONE, T( 1, NB ), 1, A( K+1, I ), 1 )
271*
272            A( K+I-1, I-1 ) = EI
273         END IF
274*
275*        Generate the elementary reflector H(I) to annihilate
276*        A(K+I+1:N,I)
277*
278         CALL SLARFG( N-K-I+1, A( K+I, I ), A( MIN( K+I+1, N ), I ), 1,
279     $                TAU( I ) )
280         EI = A( K+I, I )
281         A( K+I, I ) = ONE
282*
283*        Compute  Y(K+1:N,I)
284*
285         CALL SGEMV( 'NO TRANSPOSE', N-K, N-K-I+1,
286     $               ONE, A( K+1, I+1 ),
287     $               LDA, A( K+I, I ), 1, ZERO, Y( K+1, I ), 1 )
288         CALL SGEMV( 'Transpose', N-K-I+1, I-1,
289     $               ONE, A( K+I, 1 ), LDA,
290     $               A( K+I, I ), 1, ZERO, T( 1, I ), 1 )
291         CALL SGEMV( 'NO TRANSPOSE', N-K, I-1, -ONE,
292     $               Y( K+1, 1 ), LDY,
293     $               T( 1, I ), 1, ONE, Y( K+1, I ), 1 )
294         CALL SSCAL( N-K, TAU( I ), Y( K+1, I ), 1 )
295*
296*        Compute T(1:I,I)
297*
298         CALL SSCAL( I-1, -TAU( I ), T( 1, I ), 1 )
299         CALL STRMV( 'Upper', 'No Transpose', 'NON-UNIT',
300     $               I-1, T, LDT,
301     $               T( 1, I ), 1 )
302         T( I, I ) = TAU( I )
303*
304   10 CONTINUE
305      A( K+NB, NB ) = EI
306*
307*     Compute Y(1:K,1:NB)
308*
309      CALL SLACPY( 'ALL', K, NB, A( 1, 2 ), LDA, Y, LDY )
310      CALL STRMM( 'RIGHT', 'Lower', 'NO TRANSPOSE',
311     $            'UNIT', K, NB,
312     $            ONE, A( K+1, 1 ), LDA, Y, LDY )
313      IF( N.GT.K+NB )
314     $   CALL SGEMM( 'NO TRANSPOSE', 'NO TRANSPOSE', K,
315     $               NB, N-K-NB, ONE,
316     $               A( 1, 2+NB ), LDA, A( K+1+NB, 1 ), LDA, ONE, Y,
317     $               LDY )
318      CALL STRMM( 'RIGHT', 'Upper', 'NO TRANSPOSE',
319     $            'NON-UNIT', K, NB,
320     $            ONE, T, LDT, Y, LDY )
321*
322      RETURN
323*
324*     End of SLAHR2
325*
326      END
327