1*> \brief \b SLARFGP generates an elementary reflector (Householder matrix) with non-negative beta. 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download SLARFGP + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarfgp.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarfgp.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarfgp.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE SLARFGP( N, ALPHA, X, INCX, TAU ) 22* 23* .. Scalar Arguments .. 24* INTEGER INCX, N 25* REAL ALPHA, TAU 26* .. 27* .. Array Arguments .. 28* REAL X( * ) 29* .. 30* 31* 32*> \par Purpose: 33* ============= 34*> 35*> \verbatim 36*> 37*> SLARFGP generates a real elementary reflector H of order n, such 38*> that 39*> 40*> H * ( alpha ) = ( beta ), H**T * H = I. 41*> ( x ) ( 0 ) 42*> 43*> where alpha and beta are scalars, beta is non-negative, and x is 44*> an (n-1)-element real vector. H is represented in the form 45*> 46*> H = I - tau * ( 1 ) * ( 1 v**T ) , 47*> ( v ) 48*> 49*> where tau is a real scalar and v is a real (n-1)-element 50*> vector. 51*> 52*> If the elements of x are all zero, then tau = 0 and H is taken to be 53*> the unit matrix. 54*> \endverbatim 55* 56* Arguments: 57* ========== 58* 59*> \param[in] N 60*> \verbatim 61*> N is INTEGER 62*> The order of the elementary reflector. 63*> \endverbatim 64*> 65*> \param[in,out] ALPHA 66*> \verbatim 67*> ALPHA is REAL 68*> On entry, the value alpha. 69*> On exit, it is overwritten with the value beta. 70*> \endverbatim 71*> 72*> \param[in,out] X 73*> \verbatim 74*> X is REAL array, dimension 75*> (1+(N-2)*abs(INCX)) 76*> On entry, the vector x. 77*> On exit, it is overwritten with the vector v. 78*> \endverbatim 79*> 80*> \param[in] INCX 81*> \verbatim 82*> INCX is INTEGER 83*> The increment between elements of X. INCX > 0. 84*> \endverbatim 85*> 86*> \param[out] TAU 87*> \verbatim 88*> TAU is REAL 89*> The value tau. 90*> \endverbatim 91* 92* Authors: 93* ======== 94* 95*> \author Univ. of Tennessee 96*> \author Univ. of California Berkeley 97*> \author Univ. of Colorado Denver 98*> \author NAG Ltd. 99* 100*> \date November 2015 101* 102*> \ingroup realOTHERauxiliary 103* 104* ===================================================================== 105 SUBROUTINE SLARFGP( N, ALPHA, X, INCX, TAU ) 106* 107* -- LAPACK auxiliary routine (version 3.6.0) -- 108* -- LAPACK is a software package provided by Univ. of Tennessee, -- 109* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 110* November 2015 111* 112* .. Scalar Arguments .. 113 INTEGER INCX, N 114 REAL ALPHA, TAU 115* .. 116* .. Array Arguments .. 117 REAL X( * ) 118* .. 119* 120* ===================================================================== 121* 122* .. Parameters .. 123 REAL TWO, ONE, ZERO 124 PARAMETER ( TWO = 2.0E+0, ONE = 1.0E+0, ZERO = 0.0E+0 ) 125* .. 126* .. Local Scalars .. 127 INTEGER J, KNT 128 REAL BETA, BIGNUM, SAVEALPHA, SMLNUM, XNORM 129* .. 130* .. External Functions .. 131 REAL SLAMCH, SLAPY2, SNRM2 132 EXTERNAL SLAMCH, SLAPY2, SNRM2 133* .. 134* .. Intrinsic Functions .. 135 INTRINSIC ABS, SIGN 136* .. 137* .. External Subroutines .. 138 EXTERNAL SSCAL 139* .. 140* .. Executable Statements .. 141* 142 IF( N.LE.0 ) THEN 143 TAU = ZERO 144 RETURN 145 END IF 146* 147 XNORM = SNRM2( N-1, X, INCX ) 148* 149 IF( XNORM.EQ.ZERO ) THEN 150* 151* H = [+/-1, 0; I], sign chosen so ALPHA >= 0. 152* 153 IF( ALPHA.GE.ZERO ) THEN 154* When TAU.eq.ZERO, the vector is special-cased to be 155* all zeros in the application routines. We do not need 156* to clear it. 157 TAU = ZERO 158 ELSE 159* However, the application routines rely on explicit 160* zero checks when TAU.ne.ZERO, and we must clear X. 161 TAU = TWO 162 DO J = 1, N-1 163 X( 1 + (J-1)*INCX ) = 0 164 END DO 165 ALPHA = -ALPHA 166 END IF 167 ELSE 168* 169* general case 170* 171 BETA = SIGN( SLAPY2( ALPHA, XNORM ), ALPHA ) 172 SMLNUM = SLAMCH( 'S' ) / SLAMCH( 'E' ) 173 KNT = 0 174 IF( ABS( BETA ).LT.SMLNUM ) THEN 175* 176* XNORM, BETA may be inaccurate; scale X and recompute them 177* 178 BIGNUM = ONE / SMLNUM 179 10 CONTINUE 180 KNT = KNT + 1 181 CALL SSCAL( N-1, BIGNUM, X, INCX ) 182 BETA = BETA*BIGNUM 183 ALPHA = ALPHA*BIGNUM 184 IF( ABS( BETA ).LT.SMLNUM ) 185 $ GO TO 10 186* 187* New BETA is at most 1, at least SMLNUM 188* 189 XNORM = SNRM2( N-1, X, INCX ) 190 BETA = SIGN( SLAPY2( ALPHA, XNORM ), ALPHA ) 191 END IF 192 SAVEALPHA = ALPHA 193 ALPHA = ALPHA + BETA 194 IF( BETA.LT.ZERO ) THEN 195 BETA = -BETA 196 TAU = -ALPHA / BETA 197 ELSE 198 ALPHA = XNORM * (XNORM/ALPHA) 199 TAU = ALPHA / BETA 200 ALPHA = -ALPHA 201 END IF 202* 203 IF ( ABS(TAU).LE.SMLNUM ) THEN 204* 205* In the case where the computed TAU ends up being a denormalized number, 206* it loses relative accuracy. This is a BIG problem. Solution: flush TAU 207* to ZERO. This explains the next IF statement. 208* 209* (Bug report provided by Pat Quillen from MathWorks on Jul 29, 2009.) 210* (Thanks Pat. Thanks MathWorks.) 211* 212 IF( SAVEALPHA.GE.ZERO ) THEN 213 TAU = ZERO 214 ELSE 215 TAU = TWO 216 DO J = 1, N-1 217 X( 1 + (J-1)*INCX ) = 0 218 END DO 219 BETA = -SAVEALPHA 220 END IF 221* 222 ELSE 223* 224* This is the general case. 225* 226 CALL SSCAL( N-1, ONE / ALPHA, X, INCX ) 227* 228 END IF 229* 230* If BETA is subnormal, it may lose relative accuracy 231* 232 DO 20 J = 1, KNT 233 BETA = BETA*SMLNUM 234 20 CONTINUE 235 ALPHA = BETA 236 END IF 237* 238 RETURN 239* 240* End of SLARFGP 241* 242 END 243