1*> \brief \b SORG2L generates all or part of the orthogonal matrix Q from a QL factorization determined by sgeqlf (unblocked algorithm). 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download SORG2L + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorg2l.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorg2l.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorg2l.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE SORG2L( M, N, K, A, LDA, TAU, WORK, INFO ) 22* 23* .. Scalar Arguments .. 24* INTEGER INFO, K, LDA, M, N 25* .. 26* .. Array Arguments .. 27* REAL A( LDA, * ), TAU( * ), WORK( * ) 28* .. 29* 30* 31*> \par Purpose: 32* ============= 33*> 34*> \verbatim 35*> 36*> SORG2L generates an m by n real matrix Q with orthonormal columns, 37*> which is defined as the last n columns of a product of k elementary 38*> reflectors of order m 39*> 40*> Q = H(k) . . . H(2) H(1) 41*> 42*> as returned by SGEQLF. 43*> \endverbatim 44* 45* Arguments: 46* ========== 47* 48*> \param[in] M 49*> \verbatim 50*> M is INTEGER 51*> The number of rows of the matrix Q. M >= 0. 52*> \endverbatim 53*> 54*> \param[in] N 55*> \verbatim 56*> N is INTEGER 57*> The number of columns of the matrix Q. M >= N >= 0. 58*> \endverbatim 59*> 60*> \param[in] K 61*> \verbatim 62*> K is INTEGER 63*> The number of elementary reflectors whose product defines the 64*> matrix Q. N >= K >= 0. 65*> \endverbatim 66*> 67*> \param[in,out] A 68*> \verbatim 69*> A is REAL array, dimension (LDA,N) 70*> On entry, the (n-k+i)-th column must contain the vector which 71*> defines the elementary reflector H(i), for i = 1,2,...,k, as 72*> returned by SGEQLF in the last k columns of its array 73*> argument A. 74*> On exit, the m by n matrix Q. 75*> \endverbatim 76*> 77*> \param[in] LDA 78*> \verbatim 79*> LDA is INTEGER 80*> The first dimension of the array A. LDA >= max(1,M). 81*> \endverbatim 82*> 83*> \param[in] TAU 84*> \verbatim 85*> TAU is REAL array, dimension (K) 86*> TAU(i) must contain the scalar factor of the elementary 87*> reflector H(i), as returned by SGEQLF. 88*> \endverbatim 89*> 90*> \param[out] WORK 91*> \verbatim 92*> WORK is REAL array, dimension (N) 93*> \endverbatim 94*> 95*> \param[out] INFO 96*> \verbatim 97*> INFO is INTEGER 98*> = 0: successful exit 99*> < 0: if INFO = -i, the i-th argument has an illegal value 100*> \endverbatim 101* 102* Authors: 103* ======== 104* 105*> \author Univ. of Tennessee 106*> \author Univ. of California Berkeley 107*> \author Univ. of Colorado Denver 108*> \author NAG Ltd. 109* 110*> \date September 2012 111* 112*> \ingroup realOTHERcomputational 113* 114* ===================================================================== 115 SUBROUTINE SORG2L( M, N, K, A, LDA, TAU, WORK, INFO ) 116* 117* -- LAPACK computational routine (version 3.4.2) -- 118* -- LAPACK is a software package provided by Univ. of Tennessee, -- 119* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 120* September 2012 121* 122* .. Scalar Arguments .. 123 INTEGER INFO, K, LDA, M, N 124* .. 125* .. Array Arguments .. 126 REAL A( LDA, * ), TAU( * ), WORK( * ) 127* .. 128* 129* ===================================================================== 130* 131* .. Parameters .. 132 REAL ONE, ZERO 133 PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) 134* .. 135* .. Local Scalars .. 136 INTEGER I, II, J, L 137* .. 138* .. External Subroutines .. 139 EXTERNAL SLARF, SSCAL, XERBLA 140* .. 141* .. Intrinsic Functions .. 142 INTRINSIC MAX 143* .. 144* .. Executable Statements .. 145* 146* Test the input arguments 147* 148 INFO = 0 149 IF( M.LT.0 ) THEN 150 INFO = -1 151 ELSE IF( N.LT.0 .OR. N.GT.M ) THEN 152 INFO = -2 153 ELSE IF( K.LT.0 .OR. K.GT.N ) THEN 154 INFO = -3 155 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN 156 INFO = -5 157 END IF 158 IF( INFO.NE.0 ) THEN 159 CALL XERBLA( 'SORG2L', -INFO ) 160 RETURN 161 END IF 162* 163* Quick return if possible 164* 165 IF( N.LE.0 ) 166 $ RETURN 167* 168* Initialise columns 1:n-k to columns of the unit matrix 169* 170 DO 20 J = 1, N - K 171 DO 10 L = 1, M 172 A( L, J ) = ZERO 173 10 CONTINUE 174 A( M-N+J, J ) = ONE 175 20 CONTINUE 176* 177 DO 40 I = 1, K 178 II = N - K + I 179* 180* Apply H(i) to A(1:m-k+i,1:n-k+i) from the left 181* 182 A( M-N+II, II ) = ONE 183 CALL SLARF( 'Left', M-N+II, II-1, A( 1, II ), 1, TAU( I ), A, 184 $ LDA, WORK ) 185 CALL SSCAL( M-N+II-1, -TAU( I ), A( 1, II ), 1 ) 186 A( M-N+II, II ) = ONE - TAU( I ) 187* 188* Set A(m-k+i+1:m,n-k+i) to zero 189* 190 DO 30 L = M - N + II + 1, M 191 A( L, II ) = ZERO 192 30 CONTINUE 193 40 CONTINUE 194 RETURN 195* 196* End of SORG2L 197* 198 END 199