1*> \brief \b SSPGST
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download SSPGST + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sspgst.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sspgst.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sspgst.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE SSPGST( ITYPE, UPLO, N, AP, BP, INFO )
22*
23*       .. Scalar Arguments ..
24*       CHARACTER          UPLO
25*       INTEGER            INFO, ITYPE, N
26*       ..
27*       .. Array Arguments ..
28*       REAL               AP( * ), BP( * )
29*       ..
30*
31*
32*> \par Purpose:
33*  =============
34*>
35*> \verbatim
36*>
37*> SSPGST reduces a real symmetric-definite generalized eigenproblem
38*> to standard form, using packed storage.
39*>
40*> If ITYPE = 1, the problem is A*x = lambda*B*x,
41*> and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
42*>
43*> If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
44*> B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L.
45*>
46*> B must have been previously factorized as U**T*U or L*L**T by SPPTRF.
47*> \endverbatim
48*
49*  Arguments:
50*  ==========
51*
52*> \param[in] ITYPE
53*> \verbatim
54*>          ITYPE is INTEGER
55*>          = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
56*>          = 2 or 3: compute U*A*U**T or L**T*A*L.
57*> \endverbatim
58*>
59*> \param[in] UPLO
60*> \verbatim
61*>          UPLO is CHARACTER*1
62*>          = 'U':  Upper triangle of A is stored and B is factored as
63*>                  U**T*U;
64*>          = 'L':  Lower triangle of A is stored and B is factored as
65*>                  L*L**T.
66*> \endverbatim
67*>
68*> \param[in] N
69*> \verbatim
70*>          N is INTEGER
71*>          The order of the matrices A and B.  N >= 0.
72*> \endverbatim
73*>
74*> \param[in,out] AP
75*> \verbatim
76*>          AP is REAL array, dimension (N*(N+1)/2)
77*>          On entry, the upper or lower triangle of the symmetric matrix
78*>          A, packed columnwise in a linear array.  The j-th column of A
79*>          is stored in the array AP as follows:
80*>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
81*>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
82*>
83*>          On exit, if INFO = 0, the transformed matrix, stored in the
84*>          same format as A.
85*> \endverbatim
86*>
87*> \param[in] BP
88*> \verbatim
89*>          BP is REAL array, dimension (N*(N+1)/2)
90*>          The triangular factor from the Cholesky factorization of B,
91*>          stored in the same format as A, as returned by SPPTRF.
92*> \endverbatim
93*>
94*> \param[out] INFO
95*> \verbatim
96*>          INFO is INTEGER
97*>          = 0:  successful exit
98*>          < 0:  if INFO = -i, the i-th argument had an illegal value
99*> \endverbatim
100*
101*  Authors:
102*  ========
103*
104*> \author Univ. of Tennessee
105*> \author Univ. of California Berkeley
106*> \author Univ. of Colorado Denver
107*> \author NAG Ltd.
108*
109*> \date November 2011
110*
111*> \ingroup realOTHERcomputational
112*
113*  =====================================================================
114      SUBROUTINE SSPGST( ITYPE, UPLO, N, AP, BP, INFO )
115*
116*  -- LAPACK computational routine (version 3.4.0) --
117*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
118*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
119*     November 2011
120*
121*     .. Scalar Arguments ..
122      CHARACTER          UPLO
123      INTEGER            INFO, ITYPE, N
124*     ..
125*     .. Array Arguments ..
126      REAL               AP( * ), BP( * )
127*     ..
128*
129*  =====================================================================
130*
131*     .. Parameters ..
132      REAL               ONE, HALF
133      PARAMETER          ( ONE = 1.0, HALF = 0.5 )
134*     ..
135*     .. Local Scalars ..
136      LOGICAL            UPPER
137      INTEGER            J, J1, J1J1, JJ, K, K1, K1K1, KK
138      REAL               AJJ, AKK, BJJ, BKK, CT
139*     ..
140*     .. External Subroutines ..
141      EXTERNAL           SAXPY, SSCAL, SSPMV, SSPR2, STPMV, STPSV,
142     $                   XERBLA
143*     ..
144*     .. External Functions ..
145      LOGICAL            LSAME
146      REAL               SDOT
147      EXTERNAL           LSAME, SDOT
148*     ..
149*     .. Executable Statements ..
150*
151*     Test the input parameters.
152*
153      INFO = 0
154      UPPER = LSAME( UPLO, 'U' )
155      IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
156         INFO = -1
157      ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
158         INFO = -2
159      ELSE IF( N.LT.0 ) THEN
160         INFO = -3
161      END IF
162      IF( INFO.NE.0 ) THEN
163         CALL XERBLA( 'SSPGST', -INFO )
164         RETURN
165      END IF
166*
167      IF( ITYPE.EQ.1 ) THEN
168         IF( UPPER ) THEN
169*
170*           Compute inv(U**T)*A*inv(U)
171*
172*           J1 and JJ are the indices of A(1,j) and A(j,j)
173*
174            JJ = 0
175            DO 10 J = 1, N
176               J1 = JJ + 1
177               JJ = JJ + J
178*
179*              Compute the j-th column of the upper triangle of A
180*
181               BJJ = BP( JJ )
182               CALL STPSV( UPLO, 'Transpose', 'Nonunit', J, BP,
183     $                     AP( J1 ), 1 )
184               CALL SSPMV( UPLO, J-1, -ONE, AP, BP( J1 ), 1, ONE,
185     $                     AP( J1 ), 1 )
186               CALL SSCAL( J-1, ONE / BJJ, AP( J1 ), 1 )
187               AP( JJ ) = ( AP( JJ )-SDOT( J-1, AP( J1 ), 1, BP( J1 ),
188     $                    1 ) ) / BJJ
189   10       CONTINUE
190         ELSE
191*
192*           Compute inv(L)*A*inv(L**T)
193*
194*           KK and K1K1 are the indices of A(k,k) and A(k+1,k+1)
195*
196            KK = 1
197            DO 20 K = 1, N
198               K1K1 = KK + N - K + 1
199*
200*              Update the lower triangle of A(k:n,k:n)
201*
202               AKK = AP( KK )
203               BKK = BP( KK )
204               AKK = AKK / BKK**2
205               AP( KK ) = AKK
206               IF( K.LT.N ) THEN
207                  CALL SSCAL( N-K, ONE / BKK, AP( KK+1 ), 1 )
208                  CT = -HALF*AKK
209                  CALL SAXPY( N-K, CT, BP( KK+1 ), 1, AP( KK+1 ), 1 )
210                  CALL SSPR2( UPLO, N-K, -ONE, AP( KK+1 ), 1,
211     $                        BP( KK+1 ), 1, AP( K1K1 ) )
212                  CALL SAXPY( N-K, CT, BP( KK+1 ), 1, AP( KK+1 ), 1 )
213                  CALL STPSV( UPLO, 'No transpose', 'Non-unit', N-K,
214     $                        BP( K1K1 ), AP( KK+1 ), 1 )
215               END IF
216               KK = K1K1
217   20       CONTINUE
218         END IF
219      ELSE
220         IF( UPPER ) THEN
221*
222*           Compute U*A*U**T
223*
224*           K1 and KK are the indices of A(1,k) and A(k,k)
225*
226            KK = 0
227            DO 30 K = 1, N
228               K1 = KK + 1
229               KK = KK + K
230*
231*              Update the upper triangle of A(1:k,1:k)
232*
233               AKK = AP( KK )
234               BKK = BP( KK )
235               CALL STPMV( UPLO, 'No transpose', 'Non-unit', K-1, BP,
236     $                     AP( K1 ), 1 )
237               CT = HALF*AKK
238               CALL SAXPY( K-1, CT, BP( K1 ), 1, AP( K1 ), 1 )
239               CALL SSPR2( UPLO, K-1, ONE, AP( K1 ), 1, BP( K1 ), 1,
240     $                     AP )
241               CALL SAXPY( K-1, CT, BP( K1 ), 1, AP( K1 ), 1 )
242               CALL SSCAL( K-1, BKK, AP( K1 ), 1 )
243               AP( KK ) = AKK*BKK**2
244   30       CONTINUE
245         ELSE
246*
247*           Compute L**T *A*L
248*
249*           JJ and J1J1 are the indices of A(j,j) and A(j+1,j+1)
250*
251            JJ = 1
252            DO 40 J = 1, N
253               J1J1 = JJ + N - J + 1
254*
255*              Compute the j-th column of the lower triangle of A
256*
257               AJJ = AP( JJ )
258               BJJ = BP( JJ )
259               AP( JJ ) = AJJ*BJJ + SDOT( N-J, AP( JJ+1 ), 1,
260     $                    BP( JJ+1 ), 1 )
261               CALL SSCAL( N-J, BJJ, AP( JJ+1 ), 1 )
262               CALL SSPMV( UPLO, N-J, ONE, AP( J1J1 ), BP( JJ+1 ), 1,
263     $                     ONE, AP( JJ+1 ), 1 )
264               CALL STPMV( UPLO, 'Transpose', 'Non-unit', N-J+1,
265     $                     BP( JJ ), AP( JJ ), 1 )
266               JJ = J1J1
267   40       CONTINUE
268         END IF
269      END IF
270      RETURN
271*
272*     End of SSPGST
273*
274      END
275